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Abstract

This paper establishes a negative result for clustering:
above a certain ratio of random noise to non-random
information, it is impossible for a large class of cost
functions to distinguish between two partitions of a
data set. In particular, it is shown that as the di-
mension increases, the ability to distinguish an accu-
rate partitioning from an inaccurate one is lost un-
less the informative components are both sufficiently
numerous and sufficiently informative. We examine
squared error cost functions in detail. More gener-
ally, it is seen that the VC-dimension is an essential
hypothesis for the class of cost functions to satisfy
for an impossibility proof to be feasible. Separately,
we provide bounds on the probabilistic behavior of
cost functions that show how rapidly the ability to
distinguish two clusterings decays. In two examples,
one simulated and one with genomic data, bounds on
the ability of squared-error and other cost functions
to distinguish between two partitions are computed.
Thus, one should not rely on clustering results alone
for high dimensional low sample size data and one
should do feature selection.
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1 INTRODUCTION

A number of recently emerged data types have dimen-
sions that are beyond the usual scale of conventional
statistical techniques. In analyzing such data, it is
generally understood that one achieves better results
if irrelevant features are discarded, and numerous re-
cent results outline ways to do this. The purpose of
this paper is to present a theoretical bound on what
can be learned from using any technique that eval-
uates any clustering by way of a large class of cost
functions that includes squared error. Our findings
apply to the results of any clustering technique in-
cluding partial and two-way clustering.
For our investigation, we assume a standard signal

plus noise model

Y = x+ ε, (1)

where Y, x, and ε are D × n dimensional matri-
ces. The D-dimensional data points in the columns
of Y come from n non-random but unknown D-
dimensional columns xi of x plus a column from the
random noise matrix ε; the entries in Y are the only
values in (1) that are available to the experimenter.
Note that the xi’s are non-stochastic and represent
the centroids of clusters or of regions (for which the
centroid is the mode). In a clustering context, each
column in x may represent a cluster center associated
with each point (so centroids are included with multi-
plicity). Here we are concerned with the setting that
data of this form is high dimensional but low sample
size, i.e. largeD and small n. Specifically, we assume
D ≫ n so that standard regression techniques cannot
be applied without substantial modification.
It is common to search for useful structure in (1)

by using clustering techniques on the columns or rows
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of Y. One can cluster over samples, i.e., over n vec-
tors of length D, to find relationships among sub-
jects. Alternatively, one can cluster over variables,
i.e., over D vectors of length n, when the goal is to
find relationships among the candidate explanatory
variables. Here we focus on the first case, clustering
over samples, since that is the primary goal in many
applications. In this context we show an impossibility
result: evaluating different clusterings by a squared
error cost function is only possible when the sum of
squared distances between certain of the explanatory
variable values for the i-th subject, the xi’s, deter-
mined by the clusterings has a rate above

√
D as

the dimension D increases, provided the noise terms
are well behaved. However, if this rate is smaller
than

√
D, meaningful clustering is not possible in the

sense that any orderings over clusterings, in terms of
squared error loss, is indistinguishable from random.
The principle extends to cost functions derived from
other Lp norms but has extra complexities we discuss
below.
While it is intuitively plausible that clustering of

noisy high-dimensional data can lead to spurious clus-
terings some practitioners seem unaware of the pos-
sibility; see [1] and [2], among others. Indeed, our
simulations will show clustering starts to have very
appreciable probability of spuriousness in relatively
benign settings. For instance, one simulation (see
Fig. 1(e)) shows that, for n = 120 and 2 informative
dimensions, by the time there are 20 to 30 variables
the probability of distinguishing a good clustering
from a bad one can fall to .7 or less in squared er-
ror. In a genomic data set from [3], we show that
when there are 5 informative variables among ap-
proximately D = 1000 variables, the probability that
a good clustering, i.e. one physically meaningful, is
distinguishable from a poor clustering falls to around
.6 for n in the low 30’s. We suggest that these cases
are representative enough of many settings to suggest
that clustering results from sparse data, i.e., D >> n
and few important variables, should be regarded as
unreliable in the absence of further analysis.
To introduce our reasoning, recognize that a clus-

tering is just a partition of the data points into dis-
joint subsets. So, consider any two partitions P and
Q of the n data points (one of these may be the op-

timal, though this is not a requirement). That is,
suppose P is of the form {P1, . . . , PK} where the
Pk’s are disjoint, non-empty, exhaustive subsets of
{1, 2, ..., n} and Q = {Q1, . . . , QK} is similar. Sup-
pose the squared error cost function is assigned so
that the cost of the partition P , i.e., the clustering,
is cost(Y,P). Then, the costs of the partitions can
be compared.

For fixed n and D, let the partition P be fixed and
regarded as a partition of the whole space. That is,
a new point is in Pk if it is closer to the mean of the
points in Pk than to the mean of any other Pk′ . Now
regard Q as the analogous partition generated by a
new set of n data points. Then, the principle quantity
of interest is the probability that one partition has a
lower cost than another given partition if the random
noise components are redrawn, i.e.,

ξD = P(cost(Y,P) ≤ cost(Y,Q)). (2)

Note that in (2), we are treating cost functions as ran-
dom variables rather than taking expectations and
obtaining a formal decision-theoretic risk as in [4] and
[5]. If ξD is near 0 or 1, the cost function can reliably
determine that P is much worse or much better, re-
spectively, than Q. However, if ξD ≃ 1�2, the result is
no better than random. This paper gives conditions
under which ξD → 1�2 as D → ∞, and investigates
the rate at which this occurs. We emphasize that (i)
our key theorems are asymptotic in D for fixed n for
which relatively few results seem to exist, and that
(ii) the expression (2) is comparative in the sense that
no properties of P or Q are assumed; as partitions,
either may be good, bad or inbetween.

One way to interpret ξD is as follows. Suppose one
sample is drawn from a random process described by
equation (1). Consider two partitions of the data
P and Q, and rank the goodness of the partitions
using the squared error cost. The squared error cost,
(see Def. 2.2 below) is essentially the ‘within sum
of squares’ from ANOVA using Euclidean norm and
treating the cluster means as the cell means. Then,
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if a second sample is drawn

ζD = P(P is worse in both cases.)

+ P(P is better in both cases.)

= ξ2D + (1− ξD)2 (3)

gives the probability that the original ranking is pre-
served. Clearly, ζD is highest when ξD ∈ {0, 1} and
lowest when ξD = 1/2. So, even though the second
draw is hypothetical since we only have one data set,
ζD is a measure of confidence in the original cluster-
ing. Hence, ξD is also an assessment of confidence in
the clustering and when it goes to 1�2 our confidence
as measured by ζD is minimized.
Now suppose that, instead of squared error, some

other Lr norm is used. It turns out that expression
(2) does not adequately capture the comparison be-
tween partitions. The reason is that there is a “bias”
term associated with the difference in costs which
may deceptively show (2) going to 0 or 1. That is, the
asymptotic behavior of cost(Y,P)− cost(Y,Q) is of
the form “constant plus limiting normal” where the
constant depends on the cost function and represents
the difference in expected values of the cost function
on the partitions. Since the “constant” is the bias,
we look at

ξD = P
(

cost(Y,P)− cost(Y,Q)

≤ E (cost(ε,P)− cost(ε,Q))
)

, (4)

the “bias corrected” form of (2). In the case of
squared error loss if P and Q have the same num-
ber of clusters, the bias correction is E ε

T
d Bεd = 0

where B is the difference matrix for the costs of P
and Q, see Theorem 2.6. More generally, the bias
correction is not zero. For these cases, we also give
conditions under which ξD → 1�2. Note that when
P and Q have different numbers of clusters the bias
term can be nonzero even for squared error loss.
It is seen that the bias term in (4) depends on the

noise and on the partitions. While the noise is unob-
servable, there is precedent for comparing a clustering
to the dispersion one would expect under another dis-
tribution. Indeed, for estimating the number of clus-
ters, the gap statistic, see [6], uses the squared error

cost adjusted by the expected cost of a clustering on
pure noise. Here, we include the bias term to obtain
ξD → 1�2 in (4) because this is a sense in which the
noise terms swamp any informative components. In
fact, being unable to determine a difference in costs
between two partitions when the difference is costs of
clustering noise, even when bias is accounted for, is
the essence of impossibility.
Important progress has been made in understand-

ing the limits of high dimensional clustering in senses
other than cost functions. For instance, [7] and [8]
have explored the fact that for random data satisfy-
ing relatively weak distributional assumptions,

Dmax /Dmin
p−→ 1 as p → ∞, (5)

where Dmax and Dmin are the maximum and mini-
mum distances between points in the data set. In a
clustering context, this effect, at best, slows down the
convergence rates of clustering algorithms, while in
the worst case destroys any hope of recovering mean-
ingful structure in the data (see [9]). The same phe-
nomenon is described in [10] with greater attention
to the stochastic geometry of high dimensions. [11]
examines the limiting geometry of high dimensional
clustering in the context of ultrametrics and argues
that the histogram of distances between data points
is the main source of clustering information. We com-
ment that the geometry of level sets has been used
to establish a consistency result for the number of
clusters, [12].
Because equation (1) has both random and non-

random terms, it leads to conditions on the rate of in-
crease in the distance between the non-random com-
ponents. So, our conditions are more general than
those for which (5) has been shown to hold. Further-
more, our result applies to the evaluation of any out-
put that can be expressed in terms of the squared er-
ror cost function. This includes principal component
analysis, where finding the first principal component
is equivalent to optimally performing K-means with
two centroids [13].
Our theoretical results complement several other

important theoretical results on optimality condi-
tions for squared error loss. In particular, [5] uses
bounds on the excess risk to show that in high di-
mensions, squared error loss can be nearly optimized.
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They do not directly consider sparsity of informa-
tive components or noise on the observed data points,
however, so the only implication is that the squared
distance between informative components grows as

O(D). We show that if this rate is o
(√

D
)

, and

the variance of the noise doesn’t go to zero, the re-
sults will be meaningless. Between rates O(D) and

o
(√

D
)

examples where squared error loss is mean-

ingful and where it is not both occur.

There has also been important work on bounds for
classification in high dimensions. Similar to us, [14]
describes an impossibility region in terms of the num-
ber and dimension of the data points and the strength
and frequency of the meaningful dimension compo-
nents. Likewise, [15] prove an impossibility theorem
for classification in high dimensions. They also show
that under plausible large D, small n conditions, the
accuracy of any classifier using linear discriminants
becomes essentially random. (A deeper problem with
linear discriminants is even seen with finite dimen-
sions, see [4], Sec. 4.6 and Problem 4.9.) [16] es-
tablish the surprising result that linear discriminant
classifiers that neglect the covariance structure of the
explanatory variables can actually lead to better clas-
sification than linear classifiers that take the covari-
ances into consideration. This is not an impossibility
result; however, it does suggest that part of the prob-
lem with high dimensional classification is that the di-
mensions of the explanatory variables make the prob-
lem over-complex for many existing methods. Recall
that linear classifiers arise from norms defined by a
variance matrix, in essence a squared error criterion.

One of our points here is that including all the
available features in clustering can be detrimental.
Much work has been done on this for unsupervised
learning; we refer the reader to [17] or [18] for more
thorough overviews of recent results. Our main re-
sult implies that variable selection will be necessary if
the clusters generated from most cost-function based
clustering procedures are to be believed.

In the next section, we formally define our model
for the squared error setting and discuss the relevant
properties of partitions and the noise component ε.
We then state and prove our main asymptotic impos-
sibility theorem in section 3, giving conditions under

which ξD → 1�2 as D → ∞ for squared error. In
section 4, we give theoretical bounds on the rate of
this convergence along with some simple Monte Carlo
algorithms for computing it under different assump-
tions of the noise model. In section 5, we provide a
contrast to our work. By examining the link between
clustering and classification we are able to argue in-
formally that in some large n, small D cases (the
reverse of the setting here) the consistency of classifi-
cation can be used to show consistency of clustering
results. This introduces VC-dimension as an impor-
tant criteria in considering consistency of clustering
results. In Section 6, we extend our impossibility
results for squared error cost to other cost functions,
obtaining qualitatively similar, but more complex, re-
sults involving bias corrections. Finally, in 7.1, we
present empirical evidence for our results in the form
of simulations and a re-analysis of real genomic data
to reveal the limits of clustering and how these can be
bounded by rates such as those in Section 4. Proofs
of select results are given in the Appendices.

2 FORMAL SETTING

Here we treat a clustering as a partition of a data
set into disjoint, exhaustive subsets. The disjoint-
ness is essential for the proofs below. We use K to
denote the number of subsets and restrict ourselves
to nontrivial partitions containing at least two parti-
tion elements and no void partition elements. As a
matter of notation, the points in our partitions are
generically represented as integers in 1, 2, ..., n. We
formalize this in the following.

Definition 2.1. Given n points and a number of
clusters K ≤ n, a partitioning P = {P1, P2, ..., PK} is
a set of K non-empty, disjoint subsets of {1, 2, ..., n}
such that ∪K

k=1Pk = {1, 2, ..., n}. We use PnK to
denote the set of all partitionings of n points into K
partitions.

Next, we formally define the squared error cost
function.

Definition 2.2. Given a partitioning P =
{P1, P2, ..., PK} on a set of data points Y ∈ Rp×n,
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the squared error cost function is

cost(Y,P) =
∑

k

∑

i∈Pk

‖Y:i −Yk‖2 2

where Y:i = (Y1i, Y2i, ..., YDi), Yk =
mean {Y:i : i ∈ Pk} is the k-th cluster mean,
and ‖·‖2 indicates the Euclidean norm.

First note that the cost function can be separated
into dimension components, i.e.

cost(Y,P) =

D
∑

d=1

∑

k

∑

i∈Pk

(

Ydi − Y di

)2
,

where the subscript d’s indicates dimension. Second,
some straightforward algebra allows us to write

cost(Y,P) =

D
∑

d=1

1

2

∑

k

1

|Pk|
∑

i,j∈Pk

(Ydi − Ydj)
2
, (6)

where |Pk| is the cardinality of the partition element
Pk. Hence, (6) can be restated as

cost(Y,P) =

D
∑

d=1

YT
d A

P Yd = trace
(

YTAP Y
)

, (7)

where AP is

AP =
[

aPij
]

i,j=1,2,...,n
=

1

2

(

1{i=j} − 1

|Pk|
1{i,j∈Pk}

)

.

Similarly, if Q is another partition, there is a matrix
AQ . Having established this notation, we can exam-
ine the the difference between two cost functions.

2.1 Differences of Cost Functions

Many of our results depend on the difference in cost
between two partitions, say P and Q of the same
data. It is convenient to define a cost difference ma-
trix as follows.

Definition 2.3. Let B = [bij ] = AP − AQ be the
cost difference matrix between partitionings P and Q
assumed to have only non-void partition elements.

Using the definition for AP and AQ given in (8),
we have

bij =
1

2 |Qℓ|
1{i,j∈Qℓ} − 1

2 |Pk|
1{i,j∈Pk} .

Given this definition of B, it’s easy to see that

cost(Y,P)− cost(Y,Q) = trace
(

YTBY
)

.

The matrix B has several desirable properties listed
in the following.

Theorem 2.4. Let B be the cost difference matrix
between two partitions P ,Q ∈ PnK . Let λ1, ..., λn be
the eigenvalues of B, ordered so nonzero values are
indexed first. Then

A. B = UΛUT for some orthogonal matrix U and
Λ = diag (λ1, λ2, ..., λn).

B. λi ∈
[

−1�2,
1�2
]

for i = 1, ..., 2(K −M) and λi = 0
for i = 2(K −M) + 1, ..., n, where M = |P ∩ Q|
is the number of common partitions.

C. rank(B) ≤ 2(K −M).

E. trace (B) =
∑

i λi = 0.

Proof. See appendix.

2.2 Noise

We now formalize what we mean by the noise variable
ε in equation (1). Note, our asymptotic results hold
for any noise generating distribution with mean zero
and finite, non-zero fourth moment. The existence of
the fourth moment is necessary to control the second
moment of the squared error cost function. Our class
of noise terms is the following.

Definition 2.5. Suppose a sequence of distribution
functions F1, F2, ... with εdi ∼ Fd, d = 1, 2..., i =
1, 2, ..., n satisfies the following properties:

1. E εdi
= 0.

2. E ε4di=ρd, and, ∀ d, ∃L,U s. t. 0<L≤ρd≤U <
∞.
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We refer to any such sequence as a noise generat-
ing sequence, and any distribution function in a such
a sequence as a noise generating distribution.

The following theorem lists some useful connec-
tions between the cost difference matrix and noisy
data.

Theorem 2.6. Let Yd = xd + εd be as in equation
(1), and let B be a cost difference matrix for two
partitions P ,Q ∈ PnK , P 6= Q. Then, for Zd =
YT

d BYd, we have the following:

A. E εTdBεd = 0.

B. EZd = xT
d Bxd.

C. Var
(

ε
T
dBεd

)

≤ Kρd / 2.

Proof. See appendix.

It is seen that the variance has a bound indepen-
dent of n.

3 AN IMPOSSIBILITY THE-

OREM FOR SQUARED ER-

ROR LOSS

Our technique of proof is a variant on the classi-
cal Lindeberg-Feller central limit theorem and rests
on the structure of the squared error cost func-
tion, as previously discussed. The basic strat-
egy is to show that the limiting distribution of
(cost(Y,P)−cost(Y,Q))/

√
D tends to a mean-zero

normal. If this happens, then, asymptotically, the
cost function of any fixed clustering has probability
one half of being larger than the cost function of any
other fixed clustering, independently of how repre-
sentative of the modal structure of the underlying
distribution either clustering is.
Because we focus almost exclusively on the differ-

ence of cost functions, we define the variable Zd to
refer to the difference in cost of one of the D compo-
nents of Y over all n samples. Specifically, define

Zd = cost(Yd,P)− cost(Yd,Q)

= YT
d BYd = (xd + εd)

TB(xd + εd). (8)

where Yd = (Yd1, . . . , Ydn), xd = (xd1, . . . , xdn), and
εd = (εd1, . . . , εdn) for each d = 1, . . . , D, and εdi ∼
Fd, i = 1, 2, ..., n, for some noise generating sequence
F1, F2, .... We examine the properties of the cost for
fixed D and n and then let D increase to investigate
D >> n.

3.1 Asymptotic Behavior

One of the key steps in the proof of the main result,
theorem 3.2 below, is a central limit theorem show-
ing that a sequence of controlled random variables,
defined as follows, converges to a normal distribution
centered at 0. We have the following.

Theorem 3.1. Let Td, d = 1, 2, ... be a sequence of
independent random variables with ETd = rd, where
rd is a non-random sequence such that

1√
D

D
∑

d=1

rd → 0 as D → ∞.

Suppose E
(

T 2
d

)

= σ2
d, 0 < L ≤ σd ≤ U < ∞. Let

Sd = T1 + T2 + · · ·+ Td and c2d = σ2
1 + σ2

2 + · · ·+ σ2
d.

Then
SD / cD

D−→ ϕ as D → ∞ (9)

where ϕ is a random variable having a standard nor-
mal distribution with mean 0 and variance 1.

Proof. See appendix.

To present our clustering impossibility theorem, we
now focus on the asymptotic behavior of Zd as de-
fined in equation (8). Since the event [

∑

d Zd ≥ 0]
is identical to the event [cost(Y,P) ≥ cost(Y,Q)]
for finite dimensions, it is enough to show that
P(
∑

d Zd ≥ 0) → 1�2. However, Var (
∑

d Zd) → ∞,
so we use the central limit theorem 3.1 above. To
state our result, let

R(εd)=((xd1+εd1)(xd1+εd1), ..., (xdn+εdn)(xdn+εdn))
T

be the vector of length n2 consisting of the coeffi-
cients of the bij in Zd. Next, let ed be a fixed value
in the range of the n dimensional error term εd, fix
δ ≥ 0 and write

Nδ(ed) = {e′d : ‖e′d − ed‖ ≤ δ}
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for the δ neighborhood around ed. Now, we impose
a full rank condition that partitions the range of the
error term and so can be used for both continuous
and discrete error terms εd.
Condition F: For j = 1, . . . , n2, there is a δ ≥ 0 and

n2 neighborhoods of the form Nδ,j(e
(j)
d ) with centers

e
(j)
d so that for all j, P

(

εd ∈ Nδ,j(e
(j)
d )
)

> 0 and

so that for some η > 0 and any selection of e
(j),′
d ∈

Nδ,j(e
(j)
d ),

∣

∣

∣

∣

det









R(e(1),′)T

...

R(e(n
2)T ,′)









∣

∣

∣

∣

> η.

Our result is the following.

Theorem 3.2. For Yd, xd, and εd as in (8) and
suppose P and Q are any partitions in PnK , P 6=
Q, are two partitions of the n data points into K
clusters, with corresponding cost difference matrix B.
If Condition F holds and if

1√
D

D
∑

d=1

xT
dBxd → 0 (10)

then

P(cost(Y,P) ≤ cost(Y,Q)) → 1

2
(11)

as D → ∞.

Note that
∑

d x
T
dBxd = o

(√
D
)

is trivially sat-

isfied if
∑

d ‖xd‖2 2 = o
(√

D
)

. Also, note that the

condition in theorem 3.2 on the growth rate of the
cost of the informative components is tight; if they
grow at rate O(

√
D), then

∑

d Zd/
√
D may converge

to a normal distribution shifted by a non-zero con-
stant, which would therefore have a non-zero mean.
A higher rate of growth would mean that the informa-
tive components would eventually win out decisively
over the noise.

Proof. With the previous theorems and lemmas in
place, all that remains is to show that Zd satisfies

the assumptions of theorem 3.1. From theorem 2.6,
we know that

EZd = xT
d Bxd

which is a non-random, deterministic quantity. Fur-
thermore, theorem 2.6 tells us that Var

(

Z2
d

)

is fi-
nite, so ∃U ′ such that EZ2

d ≤ U ′ < ∞. More, when
P 6= Q we have B 6= 0 and this implies EZ2

d > 0
because EZ2

d = 0 only if B = 0.
Indeed, we know that Z2

d ≥ 0 so if EZ2
d = 0 then

Z2
d = 0 a.e. and so Zd = (xd + εd)

TB(xd + εd) = 0,
a.e. This means that

bTR(εd) =

n
∑

i,j=1

bij(xdi + εdi)(xdj + εdj) = 0 a.e.

(12)
where bT = (b11, . . . , bnn) are the entries of B writ-
ten out as a vector (rather than a matrix) in the same
order as in R(εd). Under Condition F, we can find
n2 linearly independent equations of the form of (12)
constraining b, each holding on a set of strictly pos-
itive measure. So, their only solution is b = 0, i.e.,
B = 0.
Now, the conditions of theorem 3.1 are satisfied,

and we have that

1√
D

D
∑

d=1

Zd

sD

D−→ ϕ as D → ∞

where s2D =
∑D

d=1 σ
2
d and ϕ ∼ N (0, 1). However,

P(ϕ ≥ 0) = 1�2, so

P

(

∑D

d=1
Zd ≥ 0

)

→ 1

2
.

But
D
∑

d=1

Zd = cost(Y,P)− cost(Y,Q),

so the theorem is proved.

To verify that Condition F is nontrivial and readily
satisfied for a large class of continuous error distribu-
tions, we show the following.

Corollary 3.3. Suppose εd has a density with respect
to Lebesgue measure that is continuous on an open
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set that has positive probability. Suppose also that
the components εdi are independent and identical with
support containing an open set. Then, Condition F
is satisfied.

Proof. Recall that R(εd) has length n2 and
bTR(εd) = 0, a.e. Partition the range of each εdi
into n2 disjoint subsets Wk for k = 1, . . . , n2 each
having strictly positive probability and containing an
open set. Then, on each subset (12) holds. That is,
bTR(εd) = 0 a.e. can be regarded as a second order
polynomial in the εdi’s. The only way a polynomial
can be zero a.e. is if all its coefficients, the bij ’s, are
zero. So, choose a single equation from each Wk for
k = 1, . . . , n2 and use its coefficients as a row in the
matrix in Condition F . These rows can be chosen to
be linearly independent because for each subset the
value of ed at which R is evaluated ranges over a set
of strictly positive measure.

We suggest that Condition F is valid even for large
classes of discrete error terms provided D is large
enough. This can be readily conjectured from (12)
but is not formally proved here. Note that our real
data example in Sec. 7 satisfies Corollary 3.3 but
other biomedical examples do not.

3.2 Connection to Subspaces

In practice, it is often assumed that the true data
is sparse in the sense that a small number of fea-
tures contain almost all the information but we do not
know which those are. The following theorem consid-
ers this case explicitly, partly to emphasize the point
that considering all the components of the dataset
can make matters worse, and partly because this
model is used in section 4 to investigate convergence
rates.

Corollary 3.4. Suppose Y = x + ε, and suppose
the columns of x vary over a fixed finite-dimensional
subspace S ⊂ RD as D increases. If the components
of ε are independent and distributed according to a
noise generating sequence, then ξD → 1�2 as D →
∞.

Proof. Let S be a fixed c-dimensional subspace of RD

that contains the span of the columns of x. Then,

xT
d1
Bxd2

= o
(√

D
)

,

for any d1 and d2 between 1 and D since any xd is
n× 1, B is n×n, and n is fixed. Since there are only
finitely many such terms that are non-zero,

D
∑

d=1

xT
d Bxd = o

(√
D
)

,

which is the main hypothesis of Theorem 3.2.

The model used in Corollary 3.3 is, essentially, the
case that we have a finite number of informative com-
ponents and the result shows that the effect of the dif-
ferences among the non-random parts disappears as
D increases. That is, clustering is impossible under
a squared error evaluation criterion.

4 CONVERGENCE RATES

Since the impossibility results in Sec. 3 hold in the
limit, the important question becomes how quickly
their conclusions are observed as D increases. In this
section, we explore this question by approximating
and bounding the sequence ξD, given in equation (2),
as D increases and ξD → 1�2.

4.1 Monte Carlo Approximations to

ξD

Assuming random variables can be drawn from noise
distributions F1, F2, ..., it is easy to obtain a simple
Monte Carlo approximation to ξD. Since B is n× n,
we can write, as in Theorem 2.5, B = UΛUT , where
U = [u1, ...,un] and the ui’s are unit vectors and
Λ = diag(λ1, ..., λn). Theorem 2.5 also provides the
bound rank(B) ≤ 2(K−M), where M is the number
of partition elements in common between P and Q.
So, letting ℓ = min(n, 2(K − M)) we can reduce U

to U = [u1, ...,uℓ] and Λ to Λ = diag(λ1, ..., λℓ), by
eliminating eigenvectors with eigenvalue zero. The
noise term has distribution F = (F1, . . . , FD) as in
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Definition 2.6 so that for each d = 1, . . . , D, εdi ∼
Fd for i = 1, . . . , n so that over j = 1, . . . , N i.i.d.
replications ε̃dij ∼ Fd. Now, a Monte Carlo approach
is given in the following.

Theorem 4.1. The probability that the cost of one
partition P of size K is less than the cost of another
partition Q, also of size K is

ξD = P(cost(Y,P) ≤ cost(Y,Q))

= P

(

ℓ
∑

i=1

λi

D
∑

d=1

(

wid + ε
T
d ui

)2 ≥ 0

)

a.s.
= lim

N→∞

1

N

N
∑

j=1

I

{

ℓ
∑

i=1

λi

D
∑

d=1

(

wid + ε̃
T
djui

)2 ≥ 0

}

,

(13)

where I{} is the indicator function and w = xTu.

The disadvantage of this Monte Carlo algorithm is
its computational complexity, O(NℓnD). The task is
easier if we assume i.i.d. Gaussian noise.

Corollary 4.2. Suppose that all εdi, d = 1, . . . , D
and i = 1, . . . , n are i.i.d. N

(

0, σ2
)

. Furthermore, let
χ2
c,i(δ), i = 1, ..., ℓ, denote i.i.d. Chi-square random

variables with c degrees of freedom and non-centrality
parameter δ. Then ξD can be expressed as a weighted
sum of Chi-square variables, i.e.,

ξD = P

(

1√
D

ℓ
∑

i=1

λiχ
2
D(δi) ≥ 0

)

(14)

a.s.
= lim

N→∞

1

N

N
∑

j=1

I

{

1√
D

ℓ
∑

i=1

λiχ
2
D,j(δi) ≥ 0

}

,

(15)

where δ(i) =
∑D

d=1(wid/σ)
2.

The setting of the last corollary can be simplified
further if the dimension of the span of the columns
of x is finite; this assumption was used in Corollary
3.3. Without loss of generality, we suppose that these
informative components i.e., having nonzero signal,
are in the first c entries of x and that all later entries
are only noise i.e., they have zero signal.

Theorem 4.3. Assume all the conditions of Cor.
4.2, in particular, εid

iid∼ N (0, 1) ∀ i, d and λi, for i =
1, ..., ℓ are the ℓ nonzero eigenvalues of B. Then

ξD= P

(

1√
D − c

ℓ
∑

i=1

λiχ
2
D−c,i ≥ 0

)

+ oP (1) as D → ∞

(16)

= lim
N→∞

[

1

N

N
∑

j=1

I

{

1√
D−c

∑

i

λiχ
2
D−c,i,j≥0

}

+oP (1)

]

(17)

where χ2
D−c,i and χ2

D−c,i,j for i = 1, . . . , ℓ and j =
1, . . . , n are i.i.d. Chi-squared random variables with
D − c degrees of freedom.

4.2 General Bounds on the Conver-

gence of ξD

While the above approximations are useful for cal-
culating ξD in practice, other theoretical bounds on
these rates are also of interest. In this section, we
present bounds on the convergence of ξD → 1�2 as
D → ∞ in terms of the higher moments of the cost
function. Often these may be easier to obtain as they
can be calculated empirically by using estimates of
the parameters that appear in the expressions below.
One standard way to bound convergence rates in

central limit theory is the well-known Berry-Esseen
theorem. One version of this is the following. Let
V1, . . . , VD be a sequence of i.i.d. random variables

such that E (Vd) = 0, E
(

V 2
d

)

= σ2, and E
(

|Vd|3
)

=

ρ < ∞. Let VD = 1
D

∑D
d=1 Vd, and let FD be the

cumulative distribution function of
√
DVD/σ. Then

there exists a constant δ such that

|Fn(t)− Φ(t)| ≤ δρ

σ3
√
D

where Φ(t) is the cumulative distribution function of
the standard normal distribution. The constant δ,
while not known exactly, has been bounded above by
0.7655 [19]. Using this version of the Berry-Esseen
theorem for the Zds will require that the noise distri-
bution from which the εid’s are drawn to have finite
sixth moment and be i.i.d. along the dimension com-
ponent d.
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To give rates on the convergence, some notation is
needed. Let

C =

c
∑

d=1

xT
d Bxd,

so that
c
∑

d=1

Zd = C +
c
∑

d=1

(εd)
T
B(εd) +

c
∑

d=1

(εd)
T
B(xd)

+

c
∑

d=1

(xd)
T
B(εd)

= C + Vc (18)

where (18) defines Vc as a sum of normal and Chi-
square random variables. We have the following.

Theorem 4.4. Suppose the first c dimension com-
ponents are the only ones with non-zero signals and
the later D − c components are drawn from an i.i.d.
noise distribution with finite sixth moment. Then for
α = α(D) satisfying

e−α(D)/8

√
D

→ 0 (19)

we have that

ξD ∈ [Φ∗(−aD)− bD,Φ
∗(−aD) + bD] (20)

where

aD =
C + α′

σ
√
D − c

bD =
δρ

σ3
√
D − c

ρ = E |cost(Yd,P)−cost(Yd,Q)|3 = E
∣

∣

ε
T
d Bεd

∣

∣

3

σ2 = E cost(Yd,P)− cost(Yd,Q)
2
= E

(

ε
T
dBεd

)2
,

and Φ∗ indicates the normal distribution integrated
over Vc = α′ for α′ < α multiplied by 1/P({Vc ≤ α})
and −aD indicates the argument over which the inte-
gration is done.

Note that the confidence intervals are distorted
by the integration, however, the rate is preserved
for each α′ > α giving an overall

√
D conver-

gence. In practice, we expediently set α = 0 and
P({Vc ≤ α}) = 1 when we use Theorem 4.4 to give
bounds on probabilities in Section 5.

Proof. The strategy here is to separate out the first c
components in (18) so their influence can be bounded
and the Berry-Esseen theorem used to get (20). We
begin by letting α > 0 and writing

P(cost(Y,P) ≤ cost(Y,Q))

= P

(

D
∑

d=1

Zd ≤ 0

)

= P

(

1√
D − c

D
∑

d=c+1

Zd

σ
≤− C + Vc

σ
√
D − c

)

= P

(

1√
D − c

D
∑

d=c+1

Zd

σ
≤− C + Vc

σ
√
D − c

∣

∣

∣Vc > α

)

P(Vc>α)

(21)

+ P

(

1√
D − c

D
∑

d=c+1

Zd

σ
≤− C + Vc

σ
√
D − c

∣

∣

∣Vc≤α

)

P(Vc≤α).

(22)

First, we show that (21) is satisfactorily small, and
so can be ignored. Observe that

0 ≤ P

(

1√
D − c

D
∑

d=c+1

Zd

σ
≤ − C + Vc

σ
√
D − c

∣

∣

∣Vc > α

)

× P(Vc > α) ≤ 1×O
(

e−α/8
)

. (23)

This follows from using standard bounds on tail prob-
abilities of the form P (X > α) where X is either nor-
mal or Chi-square and recalling that Vq is a sum of
finitely many normal and Chi-square distributed ran-
dom variables. It is seen that as long as α increases
slowly with D as in the rate hypothesis in the state-
ment of the theorem, the upper bound in (23) will go

to zero at a rate faster than O
(

1/
√
D
)

.

Next, for (22) we use the same bounds on tail prob-
abilities to assert that P (V ≤ α) ≈ 1−O

(

e−α/8
)

, in
the sense that upper and lower bounds on P (V ≤ α)
of tightness O

(

e−α/8
)

= o(D) can be given.

Now, it remains to bound the conditional proba-
bility in (22). Since Vc is independent of

∑D
i=c+1 Zd,

the conditioning can be treated point-wise in Vc for
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Vc < α. Specifically, fix α and define the events

W (Vc) = { 1√
D − c

D
∑

d=c+1

Zd

σ
≤ − C + Vc

σ
√
D − c

} (24)

B = {Vc ≤ α}. (25)

Then, by definition,

P

(

1√
D − c

D
∑

d=c+1

Zd

σ
≤ − C + Vc

σ
√
D − c

∣

∣

∣Vc ≤ α

)

= E (IW (Vc)|B) =
1

P (B)

∫

B

IW (Vc)dP(Vc = vc),

where IA indicates the indicator function for a set A.
Let α0 = α and choose α0 > α1 > . . . > αm and
set αm+1 = ∞. Write Bk = {αk > Vc > αk+1} so
∪m
k=0Bk = B. Now,
∫

B

IW (Vc)dP(Vc = vc) (26)

=
m
∑

k=0

∫

Bk

IW (Vc)dPVc
(vc)

=

m
∑

k=0

E (IW (Vc)

∣

∣

∣
αk > Vc > αk+1)PVc

(αk > Vc > αk+1)

→
∫ α

−∞

E (IW (Vc)

∣

∣

∣
Vc = α

′)PVc
(α′)dα′

=

∫ α

−∞

P
(

W (Vc = α
′
)

∣

∣

∣
Vc = α

′)PVc
(α′)dα′

,

in which the convergence follows by invoking a con-
ditional dominated convergence theorem (since the
indicator function for a set is bounded by one). The
conditional probability in the integral is

P

(

1√
D − c

D
∑

d=c+1

Zd

σ
≤ − C + α′

σ
√
D − c

∣

∣

∣

∣

∣

Vc = α′
)

,

(27)

for each Vc = α′ where α′ < α and the Berry-Esseen
theorem can be used to control it. Letting the distri-
bution function of

∑D
d=c+1Zd/(σ

√
D − c) be FD−c,

(27) is FD−c((C+α′)/(σ
√
D − c)). The Berry-Esseen

theorem then gives

∣

∣F(D−c)(t)− Φ(t)
∣

∣ ≤ δρ

σ3
√
D − c

,

and the theorem follows by integrating the approxi-
mation with respect to the marginal for Vc = α′ over
α′ < α and multiplying by 1/P(B).

Note that (19) amounts to α = o(lnD), which can
in principle swamp the effect of C. However, in cal-
culating bounds on the cost curves in Sec. 5.1, we
used α = 0 and obtained reasonable results. This
may mean the o(lnD) only takes effect for very large
D, perhaps due to a very small multiplicative factor,
or that the bound in which α appears is loose.
A final convergence rate of ξD can now be stated.

Because of the bounds on the growth rate of the in-
formative components, as mentioned in section (3.1),

we expect this rate to be O
(

1/
√
D
)

. This is borne

out in the following.

Corollary 4.5. The asymptotic convergence of ξD−
1/2 has rate at most O

(

1/
√
D
)

.

Proof. This result follows from Taylor expanding
Φ∗(·) around 0 for fixed α. Since the approximating
normal Φ for each value of α′ satisfies Φ(0) = 1/2,
we have that Φ∗(0) = 1/2 and therefore

Φ∗(−aD) = Φ∗

(

−C + α

σ
√
D−c

)

=
1

2
− C − α

σ
√

2π(D−c)
+ o

(

1

D

)

=⇒
√
D−c

(

ξD− 1

2

)

∈
[

C − α

σ
√
2π

− τ,
C − α

σ
√
2π

+ τ

]

where τ =
δρ

σ3
+ o

(

1√
D

)

.

5 CLASSIFICATION AND

CLUSTERING

Here we outline a strategy for establishing a sort of
consistency theorem for clustering. This is in con-
trast to the impossibility of clustering established in
the previous section, and generalized in the following
section. Our strategy rests on the fact that cluster-
ing and classification are closely related and there
are well-known consistency theorems for classifica-
tion. Geometrically, when the clusters in a clustering
are relatively concentrated, they often correspond to
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the distinct modes in the distribution that generated
the data. These modes may be plausibly regarded as
the distinct classes in a classification problem. Thus,
the clustering problem is, loosely, the classification
problem where the number of classes is unknown and
the knowledge of which class a data point came from
is unavailable. This often means that clustering prob-
lems are harder than classification problems and must
be solved with less information. However, if we can
situate a clustering problem plausibly in a classifica-
tion context, concepts from classification may become
applicable.
For instance, VC dimension is a measure of the

richness of a collection of sets S that often arises is
classification. Loosely, the VC dimension of S is the
maximum number of points that can be separated in
all possible ways by the elements of S. This definition
will be made precise below. It is intuitive that VC di-
mension must play a large role in a proper characteri-
zation of clustering procedures since every clustering
procedure has a collection of possible clusterings it
can generate and these can be regarded as partitions
of a space. Since VC-dimension is a way to mea-
sure the ability of a collection partitions to separate
points, VC-dimension is a measure of the richness of
the collection of clusterings a clustering method can
generate. Accordingly, we expect VC dimension to
play a large role in characterizing the complexity of
clustering methods. In effect, we expect that control-
ling VC-dimension will ensure the collection of clus-
terings is small enough that an impossibility theorem
will not hold.
To explore this, regard a data dependent partition,

such as clustering generates, purely as a description
of the distribution. That is, regard a clustering tech-
nique as a way to generate a partition of the space
that reflects the relative positions of the data. Thus,
if a partition is well chosen it may be more stable,
heuristically, than the values used to obtain it.
Since each clustering defines a collection of sets it

is reasonable to suggest that clustering techniques
choosing from larger collections of partitions are more
prone to impossibility-type results that clustering
techniques choosing from smaller collections of par-
titions. This follows because, intuitively, the richer a
collection of partitions is, the easier it is to choose a

partition that is weakly reflective, or not reflective at
all, of the structure of the data, purely by chance. For
instance a clustering method that chooses any valid
partition of D-dimensional real space is likely to be
much more unstable than normal mixture model clus-
tering that produces clusters based on the boundaries
between modes.
Roughly, the VC dimension of a class of sets is the

maximum number of points the sets can separate in
all possible ways. That is, to test if the VC dimension
of a class of sets is at least k it is enough to find a set
of k points for which all 2k possible subsets can be
picked out by the class of sets. For a formal definition
see [4], Chap. 12.4, which is used below. This is most
natural in a classification context where the goal is
to separate points based on class membership.
Theoretically, a clustering problem can be con-

verted into a classification problem by indexing a set
of candidate modes for a distribution by 1, . . . ,M and
adjoining to each yi the index of the mode (essen-
tially xi) it ‘belongs to’ perhaps in the sense of being
closest to it. We refer to this as the augmented data
(which is usually unavailable). Binary classification
therefore corresponds to M = 2. In real classification
problems, M is known whereas in clustering problems
M is unknown.
Now, assuming we know the correct M , we can

compare clustering methods by the VC-dimensions
of the collection of sets each induces. Intuitively, the
VC dimension of a clustering method (as opposed to
an individual clustering) is the maximal number of
points that can be separated in all possible ways by
using elements from the union of all sets the method
can generate. This makes sense because each sepa-
ration of the points in a data set corresponds to a
partition of the data points into clusters. As a gen-
erality, each clustering method has a range of parti-
tions it can generate. Often these have infinite VC
dimension. However, restricting attention to cluster-
ing methods that have ranges of partitions with finite
VC-dimension will permit nontrivial upper bounds as
seen below.
To develop the link among clustering, classifica-

tion and VC dimension, we consider asymptotics in
n rather than D. This is the reverse from the results
in Sections 3 and 4 in whichD increases and n is fixed
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(or grows very slowly with D). So, suppose for each
fixed D we have a collection of partitions ostensibly
defined by the clustering method and we have known
modes; below the partitions are denoted are the P ’s
with collections of elements B(P) all gathered into in
F(D). Given this, we can set up an application of
Theorem 21.2 in [4] for the case M = 2.
Turning to formalities, we recall the following def-

initions from Chap. 21.1 in [4]. Let

F(D) = {P(D) | P(D) is a finite partition of SD(R)},
where SD(R) is the ball of radius R centered at zero
in D dimensions. Next, for a given P , let B(P) be
the collection of all 2|P| sets defined from P and let
A(D) = {A ∈ B(P) for some P ∈ F}. It is seen that
A is the collection of all sets that can be generated
from F by taking unions of elements of partition in F ,
Thus, A is the collection of sets whose VC-dimension
characterizes the sensitivity of a clustering procedure.
Define ∆n(F) = s(A, n) to be the shatter coeffi-

cient of A. The shatter coefficient of a collection of
sets such as A is the maximal number of different
subsets of n points that can be ‘picked out’ by us-
ing its members. Formally, let NA(z1, . . . , zn) be the
number of distinct sets in the collection of sets

{z1, . . . , zn} ∩ A

as A ranges over A. Then,

s(A, n) = max
z1,...,zn∈(RD)n

NA(z1, . . . , zn)

The VC-dimension VA of A is the largest k for which
s(A, n) = 2k.
Next, to the augmented data, associate a parti-

tioning rule πn for each n. A partitioning rule is a
function on the augmented data that gives a parti-
tion of the Yi’s. Write Fn to mean the family of
partitions associated to πn and denote πn(D

∗) = Pn

where D∗ = D∗
n is the augmented data. For given y,

let An(y) be the unique element of Pn that contains
the point y. Given this, we can define the ‘classifica-
tion rule’

gn(y) =











0 if
∑n

i=1 I[{]yi ∈ An(y), ui = 1}
≤∑n

i=1 I[{]yi ∈ An(y), ui = 0},
1 elsewhere.

(28)

where ui = 1, 0 according to whether yi is in its cor-
rect modal class. Essentially, this classification rule
assigns a future point x to the mode for which most
of the previous xis near it have been assigned, a sort
of nearest neighbors condition based on the partition
elements rather than on a distance measure explicitly.
Theorem 21.2 in [4] can now be applied. Its main

hypotheses are

1. For each R > 0,

lim
n→∞

log(∆n(Fn))

n
= 0,

2. For any ball SB and any γ > 0,

lim
n→∞

µ({x| diam(An(x) ∩ SB) > γ}) = 0

where µ = µD is the dominating measure for the
D-dimensional space y varies over.

When these are satisfied gn is strongly consistent as
a classifier, i.e., the classification loss associated with
gn converges in probability to its minimal value for
all noise distributions some a specified class.
In the clustering context, this means that as n →

∞ the clustering is consistent in the sense that it
associates future y’s to their correct modes. Note
that this means good clustering would be achieved
and therefore an impossibility theorem cannot hold.
That is, the outline given here suggests conditions,
quite different from those of the impossibility theo-
rem, under which clustering can be consistent.
Item 1 means that the log of the shatter coefficient,

effectively the log of the VC dimension, must be small
enough, i.e., of order o(n), and hence the partition
cannot be too rich. Item 2 means that the diameter
of the partition elements must shrink as n increases
in the sense that there are few x’s in measure µ for
which their size is larger than a threshold., say γ.
Taken together, the intuition this supports is that
there is a threshold complexity, in a VC dimension
sense, so that when the class of partition elements a
clustering method can generate is restricted, but not
so restricted as to be unable to partition neighbor-
hoods, consistent clustering is possible.
By contrast, if the class of partition elements a

clustering method can generate is too rich or unable
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to partition sets with positive measure, it will be dif-
ficult for a clustering method to be consistent in the
absence of other conditions. As a generality, if D
increases, most clustering methods give a partition
with elements drawn from a larger and larger class of
possible partition elements. Heuristically, this means
that as D increases it will be harder and harder to
satisfy the conditions of Theorem 21.2 in [4] or similar
results.

6 BEYOND SQUARED ER-

ROR COST

One of the key limitations of the results presented in
the previous sections is the reliance on squared er-
ror cost. This is so because squared error cost really
only encapsulates a good notion of cost when the cor-
rect clustering consists of distinct, relatively spherical
clusters. Other cost functions are therefore of interest
both in their own right and as a way to evaluate how
reasonable the results from squared error loss are.
On the other hand, since distinct, spherical clusters
are a paradigm case, the squared error cost is a use-
ful benchmark for more general clustering problems.
Moreover, K-means clustering, its variants such as
Ward’s method, and other clustering methods based
on squared error are the most commonly occurring.

Before leaving squared error cost, we comment that
some clustering problems that do not have distinct
spherical clusters can be transformed into the setting
of Theorem 3.2. For instance, there are cases where
kernel methods can be used to transform clustering
problems having non-linearly separable clusters into
settings where a kernel based K-means or spectral
clustering may be feasible. Instances of this can be
found in [20] and [21]. In essence, transformation may
make a clustering problem amenable to techniques
best suited to separated, spherical clusters. So, the
squared error cost function may be appropriate more
generally that it might seem initially.

Nevertheless, there is real interest in variations on
squared error cost to which we turn next.

6.1 Lr,s Costs

Examination of the proof of Theorem 3.2 reveals that
it rests on representing the difference in squared error
costs as a sum over dimensions which can be decom-
posed into two terms. The first term is controlled
by a central limit theorem; the second shows how far
apart cluster centers can be and yet remain indis-
tinguishable. This analysis seems to hold for more
general norm-based cost functions as given below.

First, assume that the cost function can be sepa-
rated by dimension:

cost(Y,P) =

D
∑

d=1

fP(Yd)

for some function fP indexed by a partitioning P .
Second, assume that fP(Y) is defined in terms of the
rth norm to the power s:

fP(y) =
∑

P∈P
min
y∗∈R

‖yP − y∗‖r s (29)

where yP represents the |P |-dimensional vector of the
components of y in partition element P , and we sup-
press the subscript d denoting dimension for read-
ability. When r = s = 2, we have the case of squared
error loss as given before; thus this represents an im-
mediate generalization of this result. Note also that
r = ∞, with ‖·‖∞ being defined as the component-
wise maximum, is perfectly valid. For convenience,
we refer to this as the Lr,s cost function; in the next
section, we prove impossibility results for the cases
s ∈ {1, 2} and r ≥ s.
Now, let

Zd = fP(Yd)− fQ(Yd) (30)

Now, the key quantity in Theorem 3.2 becomes

1√
D

D
∑

d=1

(Zd − EZd) +
1√
D

D
∑

d=1

EZd. (31)

Furthermore, equation (29) can be naturally gen-
eralized to include “soft” clusterings in which points
have partial membership between the clusters, e.g.
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the probabilistic membership found by mixture mod-
eling. In this case, we could look at the more general
“weighted” norm version:

fP(y) =
K
∑

k=1

min
y∗∈R

(

n
∑

i=1

(αikyi − y∗)r
)s/r

(32)

In the case where αik is a binary indicator variable
indicating membership with

∑

i αik = 1, this reduces
to equation (29). In the general case, with a few addi-
tional assumptions, an analogous impossibility result
will still be shown to apply.
One of the reasons an impossibility theorem can

often be established for separable cost functions as
described by (29) is that they accumulate errors
over all D dimensions. Consider if we combined the
component-wise cost functions using an Lr norm, i.e.
looked at

ξD = P





(

D
∑

d=1

f r
P(Yd)

)1/r

≥
(

D
∑

d=1

f r
Q(Yd)

)1/r




(33)
In this case, for finite r, we can cancel the powers of
1/r and simply get

ξD = P

(

D
∑

d=1

f ′
P(Yd) ≥

D
∑

d=1

f ′
Q(Yd)

)

(34)

for some new f ′
P and f ′

Q. However, this does not
apply if we let r go to infinity; in this case, the sum
is replaced by a maximum over the dimensions, i.e.

cost(Y,P) = max
d∈{1,2,...,D}

fP(Yd) (35)

A simple counterexample shows that an impossibility
theorem of the manner given does not exist without
additional assumptions. Suppose that the informa-
tive components xd are non-zero only for d = 1,
but suppose that the random noise on all dimen-
sions is continuous but upper bounded by the value
ηmaxi,j |xi − xj |. Note that such an x and ε satisfy
all the assumptions of Theorem 3.2; only the cost
function is different. However, it is easy to see that,
for η sufficiently small, the comparison of partition-
ings is determined entirely by dimension d = 1 as it
will always be chosen by the max in (35).

However, using the maximum has its own prob-
lems, namely instability due to extreme values in
the noise. Unless the noise is upper bounded, the
law of large numbers guarantees that, asymptoti-
cally, the maximum will eventually be determined by
noise. While such a result may be interesting, for
the purposes of this paper we restrict ourselves to
component-wise separable cost functions of the form
given in (29).

6.2 A General Setting and Impossibil-

ity Theorem

Here we establish minimal conditions under which it
seems a general impossibility theorem holds for sep-
arable cost functions as given in equation (29).
First, as in section 2, define the difference in

component-wise cost between two partitionings P
and Q as

Zd = Zd(fP , fQ) = fP(xd + εd)− fQ(xd + εd). (36)

However, it is necessary to introduce an additional
term to handle “bias” in the cost function, i.e. the
difference in cost on pure noise:

Ud = Ud(fP , fQ) = fP(εd)− fQ(εd). (37)

When fP is squared error cost, EUd = 0 for parti-
tions P and Q with the same number of elements.
An impossibility theorem would hold if

1√
D

D
∑

d=1

(Zd − EUd)
D−→ N

(

0, V 2
)

(38)

for some V 2 > 0. Note that the comparison of two
partitionings is done in terms of

∑D
d=1 Zd using (36).

This means that if the expected value of the bias
correction term, Ud, is not zero, then the comparison
between P andQ is eventually dominated by the bias,
independently from the informative components. If
the bias is zero, as in the squared error cost, then the
comparison reduces to a purely random result with
ξD = P (

∑D
d=1 Zd ≥ 0) → 1�2 as in the proof of

Theorem 3.2.
We comment that Berry-Esseen bounds to control

the behavior of ξD under general, separable cost func-
tions can often be found. More specifically, if an
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impossibility result holds and the third moment of
fP(Yd) exists, theorem 4.4 applies, with the quanti-
ties aD, bD, ρd, and σ2

d determined using the more
general differences of cost functions. These quanti-
ties can be determined empirically; we do this for the
illustrative plots in section 7.

To establish the sort of impossibility result sug-
gested by (38), we first formalize the technical re-
quirements on Zd, the class of component-wise cost
functions, and the distribution of the noise. Denote
a class of component-wise cost functions by F , with
fP , fQ ∈ F , and consider the following list of six con-
ditions.

A1. VC-subgraph condition: F is a VC-subgraph
class of functions.

A2. Envelope function: F has a square integrable
envelope function.

A3. Uniform Lindeberg condition: Write ‖Ud‖F2 to
mean the supremum norm of the cost difference
on pure noise, Ud = Ud(f, g), in F2 = F × F .
We require

1

D

D
∑

d=1

E ‖Zd‖F2 1{ ‖Zd‖F2 >ε
√
D} → 0 ∀ ε > 0.

A4. Covariance process convergence: The covariance
process Zd(f1, g1)Zd(f2, g2) converges point-wise
on F2 ×F2.

A5. Existence of a semi-metric: There exists a semi-
metric ρ [(f1, g1), (f2, g2)] defined on pairs of
functions (f1, g1), (f2, g2) ∈ F2, such that, for
every sequence δD ↓ 0,

sup
ρ[(f1,g1),(f2,g2)]≤δD

D
∑

d=1

E (Zd(f1, g1)−Zd(f2, g2))
2

goes to zero.

A6. Measurability: The completion of the product
space on which (Z1, Z2, ..., ZD) is defined is mea-
surable.

Since some of these conditions may be unfamil-
iar we provide some details. First, for A1, the VC
condition, the subgraph of a function f is the set
{(x, t) : t < f(x)}. A collection of functions is called
a VC-subgraph class if the collections of all subgraphs
from functions f ∈ F forms a VC class of sets, i.e.,
has finite VC dimension. For instance, if f is indexed
by all the possible hard partitionings of the data, the
class of functions is finite and condition A1 is triv-
ially satisfied. Instead, if f is indexed by all soft par-
titionings of the data, additional work must be done
to verify this assumption. Sufficient conditions for a
class of functions being a VC-subgraph class is found
in [22] or [23].

Second, A2 is a standard assumption from the the-
ory of empirical processes commonly used to ensure
bounds can be taken uniformly over the functions
within the envelope. This means that the theorem we
state below will be uniform over classes of cost func-
tions rather than for individual cost functions as in
Theorem 3.2; for non-finite classes of cost functions,
a uniform bound is required to ensure the result holds
even under optimization.

Third, condition A3 is stated for the difference in
costs, but in fact it is enough for it to hold for in-
dividual cost functions. This is analogous to the the
condition used in Theorem 3.1.

Items A4, A5, and A6 are largely technical. Covari-
ance processes must converge so that the normal limit
can be identified. A metric, not just a semi-metric,
can be defined for hard clusterings by any one of a
number of clustering indices such as the Rand index
[24] or the Jacard index. In these cases, ρ in item 5
can be phrased in terms of such a divergence m as

ρ [(fP1
, fP2

), (fQ1
, fQ2

)] = m(P1,Q1) +m(P2,Q2)

In the general case, which includes soft partitioning,
such a semi-metric depends on the context. Finally,
the measurability is a requirement for all the quan-
tities to be well-defined. Note that weaker but more
technical assumptions could replace the ones given;
we refer the reader to [22] or [23] for the details. Now,
we can state our general theorem.

Theorem 6.1. Suppose that assumptions A1–A6 are
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satisfied. Then

1√
D

D
∑

d=1

(Zd − EUd)
D−→ N

(

0, V 2
)

(39)

where V > 0, provided that Var (Ud) > 0 and

1√
D

D
∑

d=1

E (Zd − Ud)
p−→ 0 as D → ∞.

Furthermore, let TD = (1/
√
D)
∑D

d=1 EUd. If
TD → α ∈ [−∞,+∞] as D → ∞,

ξD = P

[

D−1/2
D
∑

d=1

Zd > 0

]

p−→







0 TD → +∞
Φ(α/V ) TD → α
1 TD → −∞,

(40)

where Φ is the distribution function of a N (0, 1). In
particular, if EUd = 0, then ξD → 1�2.

Note that (40) is a generalization of Theorem 3.2
to account for bias. The three limiting cases can be
understood as follows. If TD converges to α then the
event in ξD gives a normal percentile because it is
a ‘central’ value of D−1/2

∑D
d=1 Zd. However, if TD

diverges to ±∞, the limiting distribution will be over-

whelmed by bias making P
(

D−1/2
∑D

d=1 Zd > 0
)

go

to zero or one. This theorem characterizes the be-
havior of the difference in cost functions. However,
these cases depend on the asymptotic behavior of TD.
While this can often be determined empirically, as we
do in section 7, it is usually difficult to characterize
explicitly. The most important special case of this
result is α = 0, where Φ(0) = 1/2 gives clustering
impossibility.

Proof. Dealing formally with the technical details is
beyond the scope of this paper; we therefore sketch a
proof and refer the reader to [22] for a treatment of
the technical aspects.

First write equation (39) as

1√
p

D
∑

d=1

(Zd − EUd)

=
1√
D

D
∑

d=1

(Zd − EZd) +
1√
D

D
∑

d=1

E (Zd − Ud).

(41)

Now, consider the first term. Under A1 - A6,
the assumptions of the uniform central limit theo-
rem for stochastic processes, as given in Theorem
2.11.1 of [22], are satisfied. (The entropy condition
in Theorem 2.11.1 follows from A1 and A2; Theo-
rem 2.6.7 gives sufficient conditions for a VC-class of
functions to satisfy the hypotheses of Lemma 2.11.6
which gives the entropy condition. The other con-
ditions of Theorem 2.11.1 are items A3 – A6) Thus,

D−1/2
∑D

d=1(Zd−EZd) converges in distribution to a
mean zero Gaussian random variable and the nonzero
variance of Ud implies that this distribution is non-
degenerate. Thus, (39) follows.
More generally, it is seen that the second term in

(41) determines the location of the overall limit. So,
(40) follows immediately.

Note that Theorem 6.1 is a variant on (31) and
again, Berry-Esseen bounds to control the behavior
of ξD can be obtained by computing the quantities
aD, bD, ρ, and σ2 in Theorem 4.4.

6.3 Impossibility for Lr,s Cost Func-

tions

We illustrate Theorem 6.1 using the class of cost func-
tions defined in (29),

fP(x) =
∑

P∈P
min
x∗∈R

‖xP − x∗‖r s (42)

with the restriction s ∈ {1, 2}. Recall that xP rep-
resents the |P |-dimensional vector of the components
of x in partition element P .
We will derive bounds on E (Zd −Ud) in Theorem

6.1, analogous to (10) in Theorem 3.2, then show
some computational results for how the bias EUd
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behaves for 3 different cost function structures. Our
first result bounds the difference in costs of clustering
one component of real data and the cost of clustering
one component of noise when s = 1 in (42).

Lemma 6.2. Let r ∈ [1,∞] and suppose s = 1 in
(42). Then, we have that

E |fP(x+ ε)− fP(ε)| ≤ CfP(x) (43)

where C is a constant independent of x.

Proof. See Appendix A4.

To obtain an analogous result for s = 2, we use an
adapted form of Lemma 2.1 in [25].

Lemma 6.3. Let a,b ∈ Rd. Then, for r ∈ [2,∞),
∣

∣ ‖a+ b‖r 2 − ‖a‖r 2
∣

∣ ≤ 2
∣

∣aTb
∣

∣+ (r − 1) ‖b‖r 2

≤ 2d ‖a‖1 ‖b‖r + (r − 1) ‖b‖r 2

Proof. See Appendix A5.

Now, we can state bounds parallel to (43) but for
s = 2.

Lemma 6.4. Suppose r ∈ [2,∞) and

fP(x) =
∑

P∈P
min
x∗∈R

‖xP − x∗‖r 2,

where xP denotes the components in x restricted to
the partition element P . Then

E |fP(x+ ε)− fQ(ε)|
≤
∑

P∈P
min
x∗∈R

(

CP ‖xP − x∗‖r +DP ‖xP − x∗‖r 2
)

≤ C
√

fP(x) +DfP(x)

where CP , DP , C, and D are identifiable constants
depending on P, E ‖ε̃P ‖1 and r but independent of
x.

Proof. See Appendix A6.

Now, bounds on the rates, comparable to those in
Theorem 3.2 are as follows.

Theorem 6.5. A) Let s = 1 and r ∈ [s,∞]. If

|fP(x)| ∈ o
(√

D
)

and |fQ(x)| ∈ o
(√

D
)

i.e.,

1√
D

D
∑

d=1

fP(x) → 0 and
1√
D

D
∑

d=1

fQ(x) → 0,

then P (cost(x,P) > cost(x,Q)) either has no limit
or converges to a constant determined entirely by the
bias of the cost functions. If the bias is 0, then this
constant is 1�2.
B) Let s = 2 and r ∈ [s,∞). If, in addition,

1√
D

D
∑

d=1

√

fP(x) → 0 and
1√
D

D
∑

d=1

√

fQ(x) → 0

then, again, P (cost(x,P) > cost(x,Q)) either has no
limit or converges to a constant determined entirely
by the bias of the cost functions. If the bias is 0, then
this constant is 1�2.

Proof. Note that

E |Zd − Ud| ≤ E |fP(xd + εd)− fP(εd)|
+ E |fQ(xd + εd)− fQ(εd)|

The rest follows immediately from lemmas 6.2 and
6.3 and theorem 6.1.

6.4 Computing the Bias

It remains to demonstrate the behavior of the bias
term and bias correction on a few illustrative ex-
amples. Here we consider three Lr,s cost functions,
(r, s) = (1, 1), (2, 2), and (5, 2), and evaluate

EUd = E (fP(εd)− fQ(εd)) (44)

empirically to show their relative behavior. Notation-
ally, we drop the d since our noise is i.i.d. and we are
looking at the bias correction component-wise.
Let n = 100 and generate random noise from a

one-dimensional N (0, 1) distribution. Let Q be the
partition of these outcomes into two equisized sets
randomly. We compare this Q to the partitions Pi

formed by randomly assigning i points to one parti-
tion element and the other n − i points to a second
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partition element. Random assignment is reasonable
since we are looking only at noise. It is enough to do
this for i = 1, . . . , 50 since i = 51, . . . , 100 will give
symmetric results.
Panel (a) in Figure 1 shows the results of averag-

ing (44) over 107 runs. It is seen that, as expected,
the L2,2 cost function has no bias. Surprisingly, the
bias curve for the L5,2 cost function is negative, in-
dicating E fPi

(εd) < E fQ(εd). This means that the
equisized partition is strongly disfavored on average.
Informally, note that the spread of a random sam-
pling of half the elements is far more representative
of the spread of the full data. Since the Lr,s cost
function for larger r puts more weight on the outer
points, one would expect a more compact partition
to have significantly lower cost. Thus what we see is
the expected behavior.
The L1,1 cost function has quite different behavior.

First, it has both positive and negative bias depend-
ing on whether the i in Pi is odd or even. When i is
odd, Pi is favored; when i is even, the equisized par-
tition Q is favored.. The reason this occurs is that
the optimization to find a median is not necessarily
uniquely defined. For n even, any value between the
middle two values is a valid median; when n odd the
middle value is unique. (We ignore the case of multi-
plicity since this happens with zero probability.) So,
the cost of a partition with an even number of ele-
ments may be identical in cost to the same partition
with one additional element added within the range of
possible medians. Thus, on average, partitions with
an odd number of elements are slightly favored.
As a second evaluation of the effect of the bias

correction, we compare the behavior of ξD when it
is not included and when it is. Suppose we gener-
ate a one-dimensional data set with n = 100 data
points by combining 50 data points from each of a
N
(

−0.5, 0.252
)

and a N
(

0.5, .252
)

. Then, we aug-
ment the data by addingD−1 extra noise dimensions
using outcomes of a N (0, 1) so that the two dimen-
sional data points can be regarded as D dimensional
data. In fact, there is only one informative dimen-
sion since the other dimension merely has a tighter
distribution. Again, let P be the equisized partition
with two partition elements obtained by random as-
signment, but this time let Q be the random par-

(a)

(b)

(c)

Figure 1: Panel (a) plots (44) for P and Qi. The dotted
line is for (r, s) = (2, 2) and the dot-dash line is for (r, s) =
(5, 2). The upper solid line is for (r, s) = (1, 1) and i odd
and the lower solid line is for i even. Panel (b) shows
the behavior of ξD as D increases when the bias is not
taken into account and panel (c) shows ξD when the bias
is taken into account.
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tition into a 65-35 split. Since our goal is to show
impossibility, the specific choice of partitions is not
important.
Panel (b) in Figure 1 does not correct for the bias

and effectively assumes it is zero, simply comparing
the cost of the two clusterings. Panel (c), however,
shows the results of plotting

ξD = P(cost(Y,P)− cost(Y,Q) ≥ EUd),

where the EU1 accounts for the bias. The costs are
as in (42) for (r, s) = (1, 1), (2, 2), and (5, 2). In the
presence of bias, the curve for (r, s) = (5, 2) drops to
zero very quickly; it is clear that the bias has a signif-
icant affect. The unequal partitioning is favored, but
this is due only to the noise and properties of the cost
function. The curve for (1, 1), which has significantly
less bias, drops to zero more slowly. Note that we
are comparing the equisized partitioning against one
with two partitions that each have an odd number
of data points; as expected, the latter is increasingly
favored by the L1,1 cost function. The (2, 2) case,
which has no bias, decays to 1�2 as predicted.

7 COMPUTATIONS

In this section we present two computed examples.
Both illustrate how the phenomenon established in
Theorem 3.2 and Theorem 6.1 comes into effect for
different choices of clustering. That is, the dimension
D of a set of n vectors is allowed to grow and the
difference in costs of one clustering over another is
calculated repeatedly so that a curve ξ = ξD can
be given. In both cases, the number of informative
dimensions is much smaller than the apparent D, a
sort of sparsity common in many data classes. The
first example uses simulated data and the second uses
gene expression data analyzed in [3].

7.1 Simulations

As a first example of how clustering impossibility can
be seen, consider the following simple scenario. Sup-
pose a 2-dimensional data set of size n = 120 is gener-
ated by taking 40 i.i.d. data points from each of three
bivariate normal distributions. These normals have

means (−0.5, 1), (0.5, 1) and (0,−0.75) with covari-
ance matrices given by diag(.22, .252), diag(.152, .252)
and diag(.452, .352), respectively. The top panels of
Fig. 1 show three ways to cluster the data. Panel (a)
shows the correct clustering, Pbest. Panel (b) shows
Pbad, an incorrect clustering: The bottom cluster is
correct, but the top two clusters are split along a line
at y = 1 rather than on any vertical line which would
visibly separate them. Panel (c) shows an even worse
clustering, Prandom, a random assignment of the data
into three clusters.

These bivariate data are extended to data of di-
mension D = 3, 4, . . . by adding D − 2 coordinates
that were pure noise and hence uninformative. This
was done in three ways. The simplest is to add co-
ordinates that are N (0, 1). However, we also used
two other noise distributions, a mean-shifted χ2

2, i.e.,
χ2
2 − 2, and a Student’s-t with 4 degrees of freedom,

to see any effect from heavier tails.

Fig. 2 shows our computation of ξD for six sce-
narios: We look at two different comparisons of par-
titions under the three types of noise terms for the
squared error cost function. Figs. 3 and 4 show the
same six scenarios for two more cost functions, L1

and L5 for which cases we used the bias correction
procedure discussed in subsections 6.2 and 6.4.

For the squared error cost, we calculated ξD for
each value of D using the Monte Carlo simulation
identified in Theorem 4.1 and 4.3. For speed of com-
putation, we treated the difference in costs for the
noisy components, Zd = cost(P , ε) − cost(Q, ε) as a
random variable and estimated its distribution us-
ing a pool of 107 samples, each one from an i.i.d.
draw of ε. Once this empirical distribution func-
tion was computed, we could quickly sample N values

of Zd, Zd,1, . . . , Zd,N until 1
N

∑N
j=1 I

[

∑D
d=1Zd,j ≥ 0

]

converged (we chose N = 50000); this gave our esti-

mate of ξD = P
(

∑D
d=1 Zd ≥ 0

)

for D between 1 and

105. The middle curves (solid lines) in panels (d)–(i)
in Figure 2 are the curves of ξD that we found for a
variety of scenarios using L2. The curves in Figs. 1,
3 and 4 were obtained in a similar fashion.

In addition, we calculated bounds on the ξD curves
using Theorem 4.4 by expediently taking α′ = 0 in
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(20). That is, we found σ̂ and ρ̂ empirically and used
them to estimate aD and bD. The use of empirical
estimates let us get around the sixth moment con-
straint in Theorem 4.4 for the t4 to see what the
results would look like. The results are shown as the
lighter lines bracketing the central line in Panels (d)–
(i). In effect, the vertical distance between the two
lines for any given D is a sort of ‘confidence interval’
for ξD.
For the L1 and L5 cost functions, we performed

analogous simulations including obtaining the Berry-
Esseen bounds as discussed briefly at the end of sub-
section 6.2.
Overall, Figure 2 suggests the following. While

Pbad is clearly suboptimal, once the number of noise
terms is large enough, around D = 100, it becomes
unreasonable to declare Pbad as worse than Pbest –
unless the noise dimensions are removed. While it is
easier to distinguish between Prandom and Pbest, ξD
still gets close enough to 1�2 by the time D = 1000 to
cause problems.
The comparison of the noise terms is broadly con-

sistent with intuition. In the case of noise from a
standard normal distribution (see panels d and g),
ξD is essentially one until D ≈ 100 and drops to
1/2 slower than for the other two noise distributions.
That is, with normal noise, the cost function is able
to compare two clusterings quite well, up to several
hundred dimensions. In the case of the mean-shifted
χ2 with 2 degrees of freedom, ξD drops very quickly
(see panel (e)), possibly due to the asymmetry. The
decay of ξD shows that we can distinguish between
Pbest and Prandom better than between Pbest and Pbad,
but for D ≈ 1000 these two clusterings are indistin-
guishable.
If the noise comes from a student-t distribution,

the corresponding results comparing Pbad to Pbest and
Pbad to Prandom (see panels (f) and (i)) are a little
worse than those for the normal (left column) but a
little better than for the shifted χ2

2 (middle column).
We suggest this occurs because the asymmetry of the
χ2
2 with exponential tails provides more distortion

than the symmetric t- distribution does even though
it has heavier tails.
The Berry-Esseen bounds reflect the true value of

ξD quite well for large D, particularly for normal

noise. Indeed, in looking at Theorem 4.4, it can be
seen that aD gives the midpoint of the interval while
bD controls the interval width. It can be seen in Fig-
ure 2 that the midpoints track the solid line closely
and that the interval width narrows as D increases.
When the interval is narrow and the solid line is near
1/2, we can be quite sure that the clusterings are
essentially indistinguishable and this happens before
D = 1000 when there are two informative compo-
nents.
Figs. 3 and 4 give qualitatively similar conclusions.

However, comparing the second row of panels in Fig.
2 to the second rows of Figs. 3 and 4 reveals that
convergence to 1/2 is a little slower for L1 and a lit-
tle faster for L5. That is, the L1 cost function does
not provide as rapid deterioration to noninformativ-
ity of clustering with increasing D as L2 does while
L5 provides faster deterioration to noninformativity
than L2 does. This is broadly consistent with the fact
that L1 treats all distances equally while L5 tends to
be more affected by large differences. Otherwise put,
L1 is more robust than L2 or L5 in the sense that it
is less seems to be less sensitive to the noise.
It should be remembered that this example is

highly favorable to cost function based evaluation
(not least because Pbad and Prandom are so far wrong).
So, this example indicates about the best perfor-
mance they can give. This best performance is ac-
tually very good because correctly responding, even
coarsely, to two informative components out of 1000
apparent components is pretty impressive. However,
as will be seen in the next section, real examples typ-
ically provide greater challenges.

7.2 Pleural Mesothelioma Transcrip-

tion Profile Data

To compare with the simulated results, we examined
how our results are borne out in the cluster analysis
of a data set consisting of gene expression profiles for
malignant pleural mesothelioma patients1. Briefly,
pleural mesothelioma is a specific kind of lung can-
cer mostly caused by asbestos exposure. Some 3000

1This data set is publicly available at
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2549,
where it is described in detail.
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cases per year occur in the US and it is difficult to
provide a differential diagnosis before death. There
are at least three subtypes of pleural mesothelioma,
however, the distinct subtypes do not satisfactorily
relate to patient survival.
In this data set, n = 54 and each subject has had

an expression array of 22283 transcripts collected. Of
the 54, 40 had the disease, the other 14 were controls.
[3] used a variety of dimension reduction techniques
(mostly thresholding of marginal SD’s; this is com-
mon in the medical literature) to reduce the 22283
components to the 1405 components believed to be
most relevant to predicting the presence of pleural
mesothelioma. Then, [3] did a hierarchical cluster
analysis on the 1405 components. Among the 40
subjects, they identified three categories of tumor ex-
pression profiles, call them C1 with 17 data points, C2

with 14 data points and C3 with 9 data points. The
first two were relatively clear-cut clusters; C3 was ‘ev-
erything else’. Compared to the controls, C1 had 56
genes with elevated expression and C2 has 57 genes
with elevated expression; for present purposes we ig-
nore genes with decreased expression. Denote the two
sets of genes by G1 and G2. Since G1 ∩ G2 = ∅, 113
components can be regarded as informative.
Next we consider what conclusions from cluster-

ing can be extracted from this dataset under a set of
hypothetical but plausible investigations. We chose
this data set because C1 and C2 are defined and eas-
ily separated clusters providing a practically relevant
“worse case scenario” in which to apply our results
in contrast to the theoretically relevant simulation in
subsection 4.1.
We began our analysis by assuming the genes in

(G1∪G2)
c were sufficiently uninformative as to be re-

garded as noise. To ensure this assumption was satis-
fied, we examined each of the 1292 = 1405−113 com-
ponents using a Mann-Whitney test to ensure it had
no power to separate C1 from C2. (We comment that
this marginal test is only a little better than the t-test
that is standard; as a generality, marginal tests will
not detect collections of components that are individ-
ually weak but collectively highly predictive.) Thus,
for each of the 1292 genes, we used a Mann-Whitney
test to see if a nonzero shift parameter relationship
between C1 and C2 existed; this is slightly more gen-

eral than the usual two-sample t-test for a difference
in means and is more appropriate in the presence of
non-normal data since it is nonparametric. Among
the 1292 components we found that about 12% had
a p-value of less than .05, a standard cutoff; these we
discarded. Since our goal was to find data with which
to generate a suitable noise distribution we did not
do a multiple comparisons version of the test. After
throwing out the potentially informative components,
we pooled the remaining data to create an empiri-
cal distribution function which we took as our noise
distribution. We comment that there are numerous
other selection procedures we might have used so our
results are conditional on the choices we made. Other
variable selection choices are possible, but the impos-
sibility theorem would still hold.
Next, we limited our data analysis to the squared

error cost because the results from subsection 7.1 in-
dicated that changing the cost function within the Lr

class did not make a big difference. So, we ordered the
genes in G1∪G2 by their contribution to the squared
error cost function, i.e., by how well they separated
C1 and C2 in squared error. Then, we defined cluster-
ings Prandom which uses the same subjects as (C1, C2)
but randomly re-assigns them to two clusters (as in
subsection 7.1), and Pflip in which 5 randomly cho-
sen subjects are flipped from one of C1 or C2 to the
other.
Now, from the ordered 113 genes, we have 31 vec-

tors. We augment these to increase their dimension
by adding samples from the empirical of the noise
distribution. Thus, we can consider a sequence of
clustering problems, of increasing dimensions with
decreasing informativity, in which the clusters them-
selves are defined throughout.
Figure 5 shows the graphs of ξD as a function of D

for six cases for comparing the clustering (C1, C2) to
the clusterings Pflip and Prandom. The six cases corre-
spond to how many of the most informative compo-
nents are used for the clustering; call this c. Values
of c = 5, 30 and 113 were chosen. For instance, when
c = 5, the cost function uses the 5 most informative
components and outcomes from the estimate of the
noise distribution are added one at a time in each
component to generate the curve over D. The other
values of c are similar and indicated by the vertical
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lines in each panel.
It can be seen that as the number of informative

components increases, the curve for ξD and the em-
pirical Berry-Esseen bounds shifts to the right. Nev-
ertheless, when c = 5, by the time D ≈ 300, ξD has
dropped nearly to .8 for both comparisons. When
c = 30, ξD drops to .8 when D ≈ 1, 800. However,
when c = 113, ξD > .8 when D ≈ 105. That is, if
we regard .8 as a minimal standard for the believ-
ability of a clustering – a very generous allowance
– we see that c/D for these three cases is .0167,
30/1800 = .0167 and 113/105 = .001. Roughly, this
suggests that higher values of D can tolerate a lower
value of c/D and still give decent performance. That
is, for a given value of ξD, the required value of c for
good performance increases with D sub-linearly.
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Figure 2: Bounds on how fast clusterings become impossible to compare as D increases. Two clusterings,
Pbad (b) and Prandom (c), are tested against the optimal clustering Pbest (a). In the second and third rows,
estimates of ξD as a function of D are plotted as a solid line. The corresponding bounds from theorem 4.4
are plotted as dashed lines. Panels (d), (e), and (f) show ξD for Pbad vs. Pbest taking the standard normal,
the mean-shifted chi-squared with 2 degrees of freedom and the student-t with 4 degrees of freedom as the
noise models respectively. Panels (g), (h) and (i) show ξD for the “worst-case” scenario of Prandom vs. Pbest

for the same noise distributions.
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(a) (b) (c)

(d) (e) (f)

Figure 3: The comparison of Figure 1 extended to the L1,1 cost function, with bias correction included.
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(a) (b) (c)

(d) (e) (f)

Figure 4: The comparison of Figure 1 extended to the L5,2 cost function, with bias correction included.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: The probability of one clustering being detected as better than another under squared error cost for
increasing number of included genes D. The clusterings being compared are the given (C1, C2) to Pflip (left column)
and to Prandom (right column). The three rows correspond to taking the first 5, 30 or 113 informative components
and augmenting them by noise. In all plots, the solid blue curve denotes the empirically determined value of ξD,
while the dotted red lines indicate the Berry-Esseen bounds from theorem 4.4.
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A APPENDIX: ADDI-

TIONAL PROOFS

A.1 Proof of theorem 2.4

Observe that B is symmetric and real. Thus, B has
real eigenvalues and can be diagonalized with real
(unitary) matrices. This proves part A. Now letBP =
[bPij ], where

bPij =
1

2 |Pℓ|
1{i,j∈Pℓ} 1{∄k s.t. Pℓ=Qk} ,

and let BQ be similarly defined. Then from (8), we
have that B = BQ − BP . We first find the eigenval-
ues of BP and BQ. BP can be permuted to form a
block diagonal matrix ofK−M blocksB⋆

1, ...,B
⋆
K−M ,

where M is the number of partitions in common be-
tween P and Q. Now all the elements in block B⋆

k

equal (2 |Pk|)−1. For the eigenvalue problem, we can
treat each block separately. So

νPk xk = B⋆
kxk = (2|Pk|)−11 · 1Txk

= (2|Pk|)−1(Σxk, ...,Σxk),

where Σxk is the sum of its entries. It is seen that
the eigenvalue equation is solved only when νPk = 0
and |xk| = 0, or xk = c for some constant c and

νPk c = (2 |Pk|)−1(|Pk| · c) = c =⇒ νPk = 1�2.

Since the eigenvector corresponding to νPk = 1�2 is
constant, νPk has multiplicity 1. Thus there is exactly
one nonzero eigenvalue associated with each block,
for K total. The eigenvalues of BQ are similar, and
it follows that rank(BP) = rank(BQ) = K−M . Now,
rank(B) ≤ rank(BQ) + rank(−BP) = 2(K −M), so
λi = 0 for i = 2(K − M) + 1, ..., n proving B and
the second part of A. Furthermore, BP and BQ are
symmetric and positive semi-definite so [26]

max
i

λi ≤
(

max
i

(−νPi )
)

+
(

max
i

νQi

)

= 0 + 1�2

The analogous inequality for −B = BP − BQ gives
us that maxi (−λi) ≤ 1�2 =⇒ mini λi ≥ −1�2, proving

the interval bound in A. Finally,

∑

i
λi = trace (Λ) = trace

(

UTBU
)

= trace (B) = trace
(

BQ)− trace
(

BP)

=
∑

i
(2 |Qℓ|)−11{i∈Qℓ} − (2 |Pk|)−11{i∈Pk}

= K/2−K/2 = 0

which proves C, the final part of the theorem. �

A.2 Proof of theorem 2.6

To prove parts A and B, consider the following iden-
tity. Let Z be a random vector with E (Z) = m and
Var (Z) = V. Then, for any matrix A,

E
(

ZTAZ
)

= E
(

trace(AZZT )
)

= trace(AE
(

ZZT
)

)

= trace(AV +AmmT )

= trace(AV) +mTAm.

Now, let Z = ε so that m = 0 and set V = I, and
A = B. By theorem 2.4 part E, trace(B) = 0 giving
E
(

ε
TBε

)

= 0, i.e. part A. So, E
(

YTBY
)

= xTBx

which is B..
To prove C, note that Jensen’s inequality gives us

that E ε4 ≥
(

E ε2
)2
. Then

Var
(

ε
TBε

)

≤
(

∑

i,j
b2ij

)

E ε4 = ‖B‖Frob E ε4

=
(

E ε4
)

∑

i
λ2
i

≤ K
(

E ε4
)

/2

where we use theorem 2.4 the fact that the Frobe-
nious norm is invariant to unitary transformations to
rewrite it as the sum of the squared eigenvalues. The
last inequality follows by use of part D in theorem
2.4. There are at most ℓ nonzero eigenvalues and
they are bounded by 1/2. �

A.3 Proof of theorem 3.1

Let Fd be the distribution function of Zd − rd. The
proof follows from the Lindeberg-Feller conditions on
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the central limit theorem [27]. Let Fd be the distri-
bution function of Zd, and let

µD =

D
∑

d=1

rd

If, ∀ ε > 0,

LFD =
1

c2D

D
∑

d=1

∫

{x : |x−rd|≥εcD}

(x− rd)
2
dFd(x) → 0 as D → ∞,

then Lindeberg’s theorem [27] gives

(SD − µD) / cD
D−→ ϕ as D → ∞.

We later show that the µD term drops out in the
limit. Now let s2D = meand∈{1,2,...,D} σ

2
d. Then

LFD =
1

Ds2D

D
∑

d=1

∫

{x : |x−rd|≥εsD
√
D}

(x− rd)
2dFd(x)

≤ 1

Ds2D









D max
d∈{1,2,...,D}

∫

{x : |x−rd|≥εsD
√
D}

(x − rd)
2dFd(x)









≤ 1

L2









max
d∈{1,2,...,D}

∫

{x : |x−rd|≥εL
√
D}

(x− rd)
2dFd(x)









where we use the fact that σd is bounded below by
L and that the integral is always positive to get the
final step.

Now ∀ rd,
{

x : |x− rd| ≥ εL
√
D
}

ց ∅ as D →
∞, so ∀ d,

∫

{x : |x−rd|≥εL
√
D}

(x− rd)
2dFd(x) → 0

=⇒ 1

L2









max
d∈{1,2,...,D}

∫

{x : |x−rd|≥εL
√
D}

(x− rd)
2dFd(x)









→ 0

as D → ∞. Thus

SD − µD

sD
√
D

D−→ ϕ as D → ∞. (45)

Note that this is equivalent to (45). However, by
assumption,

1

sD

µD√
D

→ 0 as D → ∞,

so (45) reduces to

SD

cD

D−→ ϕ as D → ∞.

proving the theorem. �

A.4 Proof of Lemma 6.2

To begin, let

x∗
P = argmin

t∈R
‖xP − t‖r ,

ε∗P = argmin
t∈R

‖εP − t‖r ,

z∗P = argmin
t∈R

‖x̃P + ε̃P − t‖r ,

and define the r-th norm centered versions of the xP ’s
and εP ’s by

x̃P = xP − x∗
P and ε̃P = εP − ε∗P .

So, the triangle inequality gives

E |fP (x+ ε)− fP (ε)|
≤
∑

P∈P

E | ‖x̃P + ε̃P − z
∗
P ‖r − ‖ε̃P ‖r |.

Now, using ∨ to denote the binary maximum oper-
ator, we have

| ‖x̃P +ε̃P −z
∗
P ‖r − ‖ε̃P ‖r |

=
[

‖x̃P +ε̃P −z
∗
P‖r − ‖ε̃P ‖r

]

∨
[

‖ε̃P ‖r − ‖x̃P +ε̃P −z
∗
P‖r

]

≤
[

‖x̃P −z
∗
P ‖r +ε̃P − ‖ε̃P ‖r

]

∨
[

‖ε̃P +x̃P −z
∗
P‖r + ‖−x̃P +z

∗
P‖r − ‖x̃P +ε̃P −z

∗
P ‖r

]

≤ ‖x̃P −z
∗
P ‖r (46)

Since z∗P is the shift required to recenter ε̃P after
x̃P is added to it component-wise, |z∗P | ≤ ‖x̃P ‖∞
because the maximum absolute value in x̃P upper
bounds the distance of such a shift. Thus, we have

‖1z∗P‖r ≤ |P |1/r |z∗P |
≤ |P |1/r ‖x̃P ‖∞
≤ |P |1/r ‖x̃P ‖r ,
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where |P | is the cardinality of the partition element
P . So (46) is bounded as

‖x̃P −z∗P‖r ≤ ‖x̃P ‖r + ‖1z∗P‖r
≤ (1 + |P |1/r) ‖x̃P ‖r

and taking the sum over partition elements and re-

placing the constant with maxP∈P(1 + |P |1/r) gives
the Lemma. QED

A.5 Proof of lemma 6.3

This lemma is a special case of Lemma 2.1 in [25].
For r ∈ [2,∞), define h(a) : athbbRd 7→ Rd by

hi(a) =

{

2 ‖a‖r 2−r|ai|r−2
ai a 6= 0

0 a = 0
.

Then, for arbitrary a,b ∈ Rd, this lemma gives

‖a‖r 2 + h(a)Tb ≤ ‖a+ b‖r 2

≤ ‖a‖r 2 + h(a)Tb+ (r − 1) ‖b‖r 2.

When a = 0, the result is trivial, so assume a 6= 0.
Now, since (r − 1) ‖b‖r ≥ 0,

∣

∣ ‖a+ b‖r 2 − ‖a‖r 2
∣

∣

2

≤
∣

∣h(a)Tb
∣

∣+ (r − 1) ‖b‖r 2

≤ 2

∣

∣

∣

∣

∣

(

max
i

|ai|
‖a‖r

)r−2

aTb

∣

∣

∣

∣

∣

+ (r − 1) ‖b‖r 2

However, ‖a‖r ≥ maxi |ai|, so the inequality simpli-
fies to

∣

∣ ‖a+ b‖r 2 − ‖a‖r 2
∣

∣ ≤ 2
∣

∣aTb
∣

∣+ (r − 1) ‖b‖r 2

≤ 2 ‖a‖1 ‖b‖1 + (r − 1) ‖b‖r 2,

Now ‖b‖1 ≤ d maxi |bi| ≤ d ‖b‖r , yielding the final
inequality. �

A.6 Proof of lemma 6.4

Let x∗
P , ε

∗
P , x̃P , ε̃P , and z∗ be defined as in lemma

6.2. We can then proceed as follows:

E |fP (x+ ε)− fP (ε)|
≤
∑

P∈P

E
∣

∣ ‖x̃P + ε̃P − z
∗
P‖r 2 − ‖ε̃P ‖r 2

∣

∣

≤
∑

P∈P

E
(

AP ‖x̃P −z
∗
P ‖r + (r−1) ‖x̃P −z

∗
P ‖r 2)

Where we applied lemma 6.3 to get the last step,
with AP = 2 |P | ‖ε̃P ‖1 . Now, from the proof of

lemma 6.2, ‖x̃P −z∗P‖r ≤ (1 + |P |1/r) ‖x̃P ‖r , giv-
ing an upper bound of

E |fP (x+ ε)− fP (ε)| ≤
∑

P∈P

CP ‖x̃P ‖r +DP ‖x̃P ‖r 2
,

where

CP = 2 |P | E ( ‖ε̃P ‖1 )(1 + |P |1/r)
DP = (r − 1)(1 + |P |1/r)2.

This gives the first inequality in the Lemma.
Letting D = maxP∈P DP and bringing it outside

the sum gives the first term in the second inequality
and letting C = |P|maxP∈P

√
CP allows us to write

∑

P∈P
CP ‖x̃P ‖r ≤ C

√

∑

P∈P
‖x̃P ‖r 2.�

31


