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SUMMARY. Here we give a technique for online prediction that uses different model selection

principles (MSP’s) at different times. The central idea is that each MSP is associated with a

collection of models for which it is best suited. This means one can use the data to choose an

MSP. Then, the MSP chosen is used with the data to choose a model, and the parameters of the

model are estimated so that predictions can be made. Depending on the degree of discrepancy

between the predicted values and the actual outcomes one may update the parameters within a

model, re-use the MSP to rechoose the model and estimate its parameters, or start all over again

rechoosing the MSP. Our main formal result is a theorem which gives conditions under which our

technique performs better than always using the same MSP. We also discuss circumstances under

which dropping data points may lead to better predictions.

1. Introduction

Although there is a vast literature on how various model selection procedures,
MSP’s, perform there is very little guidance about how to choose one. Many people
advocate a specific MSP for general use. However, other people, with equally good
reasons, advocate a different MSP. They can’t all be right. The discrepancy can be
cleared up by recognizing that one MSP may be better for a given class of models
than another MSP is. Also, one MSP may be better for one purpose, say prediction,
than another MSP is for another purpose, say parameter estimation. This means
the physical meaning and statistical interpretation of MSP’s cannot be ignored. So,
if you are unclear about which MSP to use, which class of models to search, or you
are not sure about what the ultimate use of a chosen model will be, you should
keep your options open: You should search over various MSP’s, and the classes of
models associated to them and evaluate performance by a criterion which is good,
independently of the purpose of the modeling.

Here, we justify a technique for how to choose an MSP for use in an online pre-
diction setting. Our technique permits different MSP’s at different times depending
on how well they perform. The main strength of our technique is that it makes
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very weak assumptions on the data generating mechanism, satisfies a form of what
has been termed the ‘prequential’ principle see Dawid (1984), and asymptotically
performs no worse than using the ‘best’ predictor.

First, the setting of online prediction is essential for our approach because ac-
curate prediction is the main way that the adequacy of a model must be reflected
– regardless of the goals of an analysis. Moreover, good prediction is a test of any
subsidiary aim: If the goal of an analysis is to estimate a parameter then any good
estimate of a parameter should give good predictions. If the goal of the analysis is
model identification then the best model should give the best predictions. If the
goal of the analysis is hypothesis testing, then any rejected model should give worse
predictions than any accepted model.

Here, the prediction technique we develop is in the spirit of the predictive se-
quential – ‘prequential’ – approach of A. P. Dawid and co-authors. This approach
to prediction abandons the goal of selecting the true model and seeks only as small
a predictive error as possible. In practice, this often leads to consistency. The
prequential approach has been developed in a series of papers by A. P. Dawid and
co-authors, see for instance Dawid (1992, 1984), Seillier-Moiseiwitsch and Dawid
(1993) amongst others. More recently Skouras and Dawid (1998) study the effi-
ciency of point prediction system and Wong (2000) and Wong and Clarke (2000)
propose a prediction technique that outperforms Bayes in some small sample con-
texts.

The prequential approach has two main principles. One is that the statistical
problem is a sequential game in which any model is to be evaluated by the quality
of the forecasts it produces for the next outcome using the specific data set at
hand. This focuses attention on predictions and ensures inferences will be primarily
empirical rather than based on model assumptions. The second, also called the
‘prequential’ principle, see Dawid (1984) is that a forecast should be assessed by a
method which compares forecasts to realized outcomes in a way that is independent
of the model used to make the forecast. That is, one wants to avoid using the model
to evaluate the performance of the model. Otherwise put, there should be a common
performance criterion used to judge all models.

In brief, we assume we have sequential data and, given the first n of them, we
predict the n + 1 outcome. The prediction technique we develop here associates a
class of models to each of a collection of MSP’s and uses a statistic to choose one of
them. Then we use the MSP chosen to choose a model, estimating the parameters
in it and using that model to predict the next outcome. Upon receipt of the next
outcome, one may update the parameter estimates (if the prediction was good),
reuse the MSP to choose a new model (if the prediction was not good) or rechoose
the MSP, thereby repeating the whole procedure (if the predictions have been bad
enough for long enough). The adequacy of prediction is measured by a recent error
and by a cumulative error. A main part of the specification of the procedure will
be identifying thresholds for rechoosing the model and rechoosing the MSP. (One
can imagine using different statistics to choose an MSP and thereby wanting to
develop an MSP-selection principle. Such hierarchies probably provide diminishing
returns.)
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A heuristic version of this technique has been computationally implemented in
de Luna and Skouras (1999). Crediting Dawid (1992, p.117) for the technique,
de Luna and Skouras (1999) uses the relative cumulative predictive loss to choose
between the AIC and BIC and establishes its consistency. The three computed
examples they develop, and the simulation study they perform, suggest the method
is better than using either the AIC or BIC alone. In fact, the technique used in de
Luna and Skouras (1999) was first described in Clarke (1997), and here we build
on the extensive computational work of de Luna and Skouras (1999) to clarify the
sense in which combining MSP’s does better in general.

However, one must distinguish between the adequacy of the MSP and the ade-
quacy of a model it chooses. If the MSP is good but the model chosen does poorly
then one still must refine the choice in the light of more data. Permitting occasional
jumps from MSP to MSP may speed this process by permitting the use of a new
MSP and a new model at the same timestep.

The main benefit of our adaptive method and the prequential setting is its gener-
ality. It is intended for problems where we have little pre-experimental information,
but can rely on getting ever more data. We do not restrict the models or MSP’s
available for our use: All we must do is specify them.

To make this concrete consider the Akaike Information Criterion, AIC, and the
Bayesian Information Criterion, BIC. The AIC, Akaike (1977), chooses the member
of a class of parametric families having the largest value of

AIC = log p(xn|θ̂)− d, (1.1)

where xn = (x1, ...xn) is distributed according to a parametric family of the form
pθ(·) = p(·|θ) and θ̂ = θ̂(xn) is the maximum likelihood estimate (MLE) of the
d dimensional real parameter θ = (θ1, ..., θd). By contrast, the BIC chooses the
member of a given class of parametric families having the largest value of

BIC = log p(xn|θ̂)− d/2 log n. (1.2)

The BIC penalizes models with more parameters more than the AIC does. Thus,
generally, the AIC will give models with more parameters.

What do these MSP’s mean? Akaike (1977) said (1.1) was motivated by entropy
considerations. Nevertheless, the AIC is equivalent to Mallows’ Cp, see Shibata
(1981), as well as to cross-validation and generalized-cross-validation, see Li (1987).
Recall that the AIC is inconsistent for model selection, see Woodroofe (1982) and
Hannan (1980), but that Shibata (1981) established that the AIC is asymptotically
optimal for choosing the number of terms to include in a linear model when the
dimension of the model is permitted to increase. See Hannan and Quinn (1979) for
a dependent case. Moreover, Haughton (1988) agrees with Geisser and Eddy (1979)
that the inconsistency may not affect the use of the AIC for prediction. Indeed,
there is evidence that AIC is optimal in certain predictive contexts, see Shao (1997)
and Li (1987).

The BIC arises from seeking the mode of a posterior density. Suppose we have
a prior Π on a discrete class of models indexed by i. If each model is equipped with
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a prior density w for its parameter then one can form the posterior density Π(i|xn).
The mode of this density is a natural choice for a model. However, it is easier, and
asymptotically equivalent, to maximize

log m(xn)− d/2 log n (1.3)

where m(xn) =
∫

w(θ)p(xn|θ)dθ, and d is the dimension of θ. In turn, (1.3) leads to
(1.2) by a Laplace expansion argument, see Haughton (1988). Using a Bayes factor
argument, Schwarz (1978) establishes the optimality of the BIC for exponential
families when the dimension remains bounded.

Thus, there is a sort of predictive optimality which one might associate to the
AIC and a sort of hypothesis testing optimality one might associate to the BIC.
Furthermore, one might expect that the AIC will perform better than the BIC when
the true model has many parameters and that the BIC will perform better than
the AIC when the true model has few parameters. Thus, the AIC and BIC are
expected to perform well on different classes of parametric families. However, if we
cannot choose the right class of models and cannot tell if the intuition behind the
AIC or BIC is relevant, which – if either – should we use?

Recently, an interesting answer to this question has been supplied, showing that
the situation for the AIC and BIC is not as simple as the foregoing discussion as-
sumes. Indeed, Mukhopadhyay (2000) reveals that the current use of (1.1) and (1.2)
is misleading. The BIC arises when zero-one loss is used but needs to be adjusted to
accommodate increasing dimensions. This can be done as in Mukhopadhyay (2000,
Sec. 2.2.2, 2.2.3). It is seen there that correcting the asymptotic approximation
leads to a generalized BIC. Moreover, an empirical Bayes model selection rule is
equivalent to the AIC (Mukhopadhyay 2000, Sec. 3.3, 3.4) and this can be out-
peformed by an unconstrained empirical Bayes rule (in which the empirical Bayes
estimates replace least squares estimates), regardless of whether the true model is
in the model space, see Mukhopadhyay (2000, 3.5, 3.6). Thus, one can argue that,
in squared error prediction loss, a correct version of the BIC may be optimal, in
principle obviating conventional use and justification of the AIC.

For contrast, suppose you want to estimate a density and are concerned about
tail behavior. Knowing that coding criteria involve logarithms of density ratios that
are sensitive to tail behavior you might hope that some kind of information criterion
is relevant. So, consider the minimum description length (MDL) context. Barron
and Cover (1990), and Rissanen (1996) minimize a data driven analogue of coding
redundancy to choose a model. One still must optimize over a specific class of
functions, and the size of the penalty term and the risk is determined by the class.
The MDL approach, and its variants, goes back to Barron (1985), and Rissanen
(1978). See also Wallace and Freeman (1987). In the fully parametric setting it
has the same (d/2) log n penalty term as the BIC, as well as analogous asymptotic
properties, see Barron and Cover (1990). The MDL refines and extends the BIC by
providing an interpretation for the prior and for the objective function in terms of
code length. The MDL may perform slightly better than the BIC in some coding
contexts because it uses an optimal constant term. However, the coding argument
justifying the MDL is at present unrelated to the optimality of the BIC due to
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Schwarz (1978), and the entropy motivation of the AIC leads to a different penalty
term from the BIC.

These MSP’s (AIC, BIC, MDL,...) are only a few of the MSP’s authors have
proposed. There are many others. A partial list includes: informational complexity,
see Bozdogan et al. (1997), informational minimaxity, see Barron and Xie (2000),
minimally informative likelihoods, see Yuan and Clarke (1999). However, our point
is to combine MSP’s in a prequential context. This means we want to use knowl-
edge of the optimality properties of MSP’s in place of assumptions about the data
generating mechanism. This is one reason some authors have sought to establish
general properties of collections of MSP’s, usually based on the penalty term.

The AIC and BIC are members of a class of MSP’s studied by Bethel and
Shumway (1988) who established consistency for a large class of penalty terms.
Consider

log p(xn|θ̂)− dfm(n), (1.4)

where fm(n) is a function of the sample size n, for each model class m. When fm

is o(n), and unbounded, Bethel and Shumway (1988) give consistency. Here, we
will assume that MSP’s with sufficiently different fm’s are optimal in sufficiently
different senses that they are unlikely to choose the same parametric family.

A partial characterization of MSP’s begun by Li (1987) was continued by Shao
(1997). He defined a generalized information criterion GICλn as the sum of a
squared error term and a complexity penalty, with λn representing the relative
weighting of the two terms. Shao (1997, Sec. 4) identifies three classes of MSP’s.
The first sets λ = 2 and contains Mallows’ Cp, the AIC, delete-1 cross-validation
and generalized cross-validation; these may be appropriate when there is no fixed
dimension correct model. The second has λ → ∞ and contains the delete-d form
of cross validation for d/n → ∞; it may be appropriate when there is a fixed
dimension correct model. The third has any fixed λ > 2 and contains the delete-d
cross-validation with d/n → τ for some τ ∈ (0, 1). It represents a trade off between
the first two classes. We suggest that this might be a good triple of classes to use
with the technique we present below.

In a different context, Yang and Barron (1998) provided general results for
MSP’s of the form

−
∑

log p(xi|θ̂(k)) + λkdk + νCk. (1.5)

The first term in (1.5) is minus the maximized log-likelihood. The middle term is
the product of dk the dimension of the parameter in the kth model and a constant λk

which is interpretable as a dimensionality constant. The third term is a complexity
penalty, like a Bayesian prior. One of the main results in Yang and Barron (1998)
gives conditions under which the expected squared Hellinger distance is bounded by
an index of resolvability. This index is similar to the minimization of the expected
value of (1.5) over a class of parametric families. Yang and Barron (1998) also note
that (1.5) can be related to the bias correction interpretation of the AIC, and to
the BIC.

We comment that the inclusiveness of the assumptions here permits us to com-
bine Bayesian and frequentist methods as in the AIC, BIC case. Indeed, we can go
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back and forth between them as the data indicate. Thus, although we present our
methods in a Bayesian context this is not essential. In particular, in a linear models
context, one can compare the predictive performance of random effects models (an
example of a hierarchical Bayes model) with a class of fixed effects models (based on
the frequentist paradigm). The hypothesis test of Dawid (1986) to decide whether
to use a random effects model or a fixed effects model would then be a suitable way
to choose an MSP. In this case, we compare the Bayes and frequentist models by
how they perform in a predictive context in the real world, an evaluation criterion
that is independent of the modeling assumptions. In many cases the two approaches
will give equivalent predictions although remain conceptually distinct.

In the next section we give the details of our strategy, along with heuristic
justifications. In Section 3, we give theoretical results: We give conditions under
which our method of combining different MSP’s provides better predictions than
any of the individual MSP’s from which it is formed. We also show that our method
reduces to the standard method under the usual assumption. Section 4 discusses the
potential benefits from omitting some data points. Finally, in a concluding section
we identify some of the remaining gaps and questions to address the broader issues
of modeling and prediction.

2. General Description of the Technique

The technique we present here was first described heuristically in Clarke (1997).
Later, de Luna and Skouras (1999) computationally implemented a special, heuristic
case of the technique in a time series context. We begin by defining what we call
the adaptive predictor by rigorously specifying the technique from Clarke (1997).
This rigor will permit establishment of an optimality result in Section 3.

2.1 Formulation of the method. Formally, suppose we have k techniques for
model selection denoted MSPi(yn) for i = 1, ...k, where yn is the data stream
y1, ..., yn. Here, an MSP is a rule by which one associates a parametric family
equipped with a unique prior to yn. The parametric family and prior generate
a prediction for the next outcome Yn+1. For now, we assume the family has no
explanatory variables but we release this assumption in Section 3. We denote the
collection of prior likelihood pairs we are willing to consider by F̃ with elements
f̃i of the form w(θ)q(y|θ). (We use the Bayesian framework for the convenience of
working with m(yn+1|yn) rather than q(yn+1|θ̂(yn)). The predictive densities have
also been identified by Aitchison (1975) as optimal under relative entropy which
locally behaves like squared error loss.)

Ideally, we want to choose F̃ to be the collection of all smooth images of fi-
nite dimensional real hyperplanes in the collection of all probability densities on
a measurable space with respect to a fixed dominating measure. Since we cannot
deal with uncountably many parametric families, we extract from F̃ a finite list of
models F = {f1, ..., f`} from which we will choose. Note that ` is not dependent
on n. We suppose that the members of F are representative in the sense that no
member of F̃ is too far away from some member of F . Intuitively, small F ’s give
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higher approximation error but low complexity whereas larger F ’s will give smaller
approximation error but higher complexity.

If there are k MSP’s, MSP1, ...,MSPk then we partition F̃ into k subsets
F̃1, ..., F̃k. This induces a partition F1, ...Fk of F . The partition of F̃ into F̃i’s
by the MSP’s is defined by choosing squared error loss and setting

F̃i = F̃i,n = {w(θ)q(y|θ)|Em(Ei(Yn+1|Y n)− Ewq(Yn+1|Y n))2

≤ min
j

Em(Ej(Yn+1|Y n)− Ewq(Yn+1|Y n))2} (2.1)

where Em denotes expectation with respect to

m(yn) =
∫

w(θ)q(yn|θ)dθ (2.2)

for appropriate n, and

Ei(Yn+1|Y n=yn) = EMSPi(yn)(Yn+1|Y n=yn) =
∫

yn+1p(yn+1|θ)w(θ|yn)dθdyn+1,

(2.3)
in which p(yj |θ) is the parametric family chosen by MSPi upon receipt of Y n = yn.
Here, w(θ|yn) is the posterior for θ given yn using the prior w(θ) and p(yj |θ).
Finally,

Ewq(Yn+1|Y n) =
∫

yn+1q(yn+1|θ)wt(θ|Y n)dθ, (2.4)

in which q(yi|θ) is the true parametric family used in the true posterior wt as well
as in the likelihood for yn+1.

It is seen that F̃i is the set of models with predictive means that are best
matched, under squared error loss, by the predictive means from models chosen
by MSPi. This is reasonable because the predictive mean of the true model is the
optimal predictor of Yn+1 using Y n. The point of the F̃i’s is to associate to each
MSP a collection of parametric families for which it performs better than the other
MSP’s. The F̃i’s will be called catchment areas.

For instance, with independent data, the BIC satisfies an optimality property
for exponential families when the dimension is bounded whereas the AIC is not
even consistent. However, the AIC may be more appropriate in prediction contexts
where one wants to permit models with more parameters. Thus, we have reason
to believe that some MSP’s are better at choosing different types of models, when
they are true, than other MSP’s are. The AIC will probably ‘find’ a model with
many parameters faster than the BIC will. The BIC will probably ‘find’ a model
with few parameters faster than the AIC.

In expressions (2.1) and (2.4) we have used the notion of a true parametric
family. We take this to mean that the data generating mechanism is in one of a
class of similar data generating mechanisms which, for physical modeling reasons,
can be represented by various parameter values. In general, if we approximate a
true parametric family by a parametric family with fewer parameters we expect the
discrepancy to lead to bias. If we approximate a true parametric family by another
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with many parameters, the complexity will degrade predictive performance. Thus,
we regard identifying a parametric family to represent the class of data generating
mechanisms as the central problem in model selection. Subsequent estimation of
the parameters is dissociable from model selection and avoids nonidentifiability.

It remains to make the choice of MSP into a function of the data. So, let
T = T (Y n) take values from 1 to k to identify one of the k MSP’s for each Y n = yn.
This T is intended to choose the MSP which should be most effective at choosing
a model for yn. Intuitively, it is enough for T to identify the optimal catchment
area. We use T to improve the prediction of Yn+1 by using Y n to select the best
MSP first, using that MSP to get a prediction. Thus, in parallel to a data sequence
Y1,...,Yn we have a prediction sequence Ŷ1,...,Ŷn in which Ŷn+1 predicts Yn+1. We
set

Ŷn+1 = Ŷn+1,T (yn) = EMSPT (yn)(Yn+1|Y n = yn), (2.5)

and refer to it as the adaptive predictor.
2.2 Evaluating How Well the Adaptive Predictor Performs. Aside from choosing

T , Section 2.1 provides a well defined procedure for generating a prediction sequence.
To obey the prequential principle we evaluate its performance independently of its
construction. Our evaluation rests on two indices of predictive performance. First
we will define a current error, CURE, and a current threshold CUT . Then we
will define a cumulative sum of squared errors for an MSP, CSE, and a conditional
variance for the cumulative sum of squared errors, CV CSE. We will want the CSE
to be less than a mean plus a function of the the CV CSE.

When wq = w(θ)q(y|θ) is true, we assess how well Ŷn+1,i (where MSP (yn) = i)
has predicted Yn+1 by evaluating the conditional expectation of the current squared
error

CURE = (Yn+1 − EMSPT (yn)(Yn+1|yn))2, (2.6)

holding yn and w(θ)q(y|θ) fixed. This gives

E(Yn+1|yn),wq(Yn+1 − EMSPT (yn)(Yn+1|yn))2

=
∫

(yn+1 − EMSPT (yn)(Yn+1|yn))2m(yn+1|yn)dyn+1, (2.7)

in which

m(yn+1|yn) =
∫

q(yn+1|θ) w(θ)q(yn|θ)∫
w(θ′)q(yn|θ′)dθ′

dθ. (2.8)

We also want the conditional variance of the current squared error (2.6). This is

V ar(Yn+1|yn),wq((Yn+1 − EMSPT (yn)(Yn+1|yn))2). (2.9)

Note that (2.7), (2.8) and (2.9) depend on the true but unknown model wq. It is
tempting to replace wq by the model chosen by the MSP. However, this would violate
the prequential principle. We get around this problem by replacing the conditional
density (2.8) based on wq by the mean of the k conditional densities for (yn+1|yn)
obtained from the k prior likelihood pairs chosen by the k MSP ’s. This choice
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is independent of T , gives the benefits of averaging, and partially addresses model
uncertainty since the models chosen by the different MSP ’s come from disjoint sets.
This is indicated by changing the subscript from wq to avg. Thus we have
E(Yn+1|yn),avg(Yn+1 − EMSPT (yn)(Yn+1|yn))2

=
1
k

k∑

l=1

∫

Θl

∫

X

(yn+1 − EMSPT (yn)(Yn+1|yn))2pl(yn+1|θl)wl(θl|yn)dyn+1dθl (2.10)

in which pl(yj |θl) is chosen by MSPl. We define the variance similarly and denote
it

V ar(Yn+1|yn),avg((Yn+1 − EMSPT (yn)(Yn+1|yn))2). (2.11)

Since we are using Ŷn+1 = Ŷn+1(yn) we compare the current error

CURE = (yn+1 − ŷn+1)2 (2.12)

to the current threshold

CUT = (2.10) + 3L1

√
(2.11) (2.13)

in which L1 is a scalar factor to be chosen later. Now, we want CURE ≤ CUT
for good prediction. The reverse event CURE > CUT means that the model we
have used gave a prediction far from the actual data point yn+1. When this occurs,
we may excuse it as a random fluctuation or we may want to take remedial action.
For instance, we might want the option of using a different model for our next
prediction. We can rechoose the model using the same MSP or rechoose the MSP
and use it to rechoose the model. It is possible that we end up with the same MSP
choosing the same old model, however, we have required that choice to compete
against the alternatives.

Before using a different MSP , we want to be sure that our current model class
is really inadequate. Thus, we find the cumulative error that has arisen from the
use of the MSP . Note that since expectations have so far been over Yn+1 with
respect to the models chosen by k MSP ’s we have neglected somewhat the effect
of T , even though we used T to choose the MSP from which to get a model for
predictions. This gap can be partially addressed by the choice of terms included in
the cumulative error sum. Obvious possibilities are 1) One can use the cumulative
errors of only the most recent uses of the MSP chosen by T , 2) One can use the
cumulative errors of all uses of the MSP, or 3) One can use the cumulative sum
of all prediction errors that one would have made had one used that MSP all the
time. The form of the cumulative error one uses will depend on the assumptions one
makes: For IID data it makes sense to use to use 3). For stationary dependent data
or independent but non-stationary data we would suggest 2) and for truly inchoate
data sequences 1) might be the best choice. We return to this in Section 4.

The cumulative sum of errors for an MSP that we consider is

CSE =
1
n

n∑

i=1

(yi − ŷi,T )2, (2.14)
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in which it is understood that the sum is over some well specified collection of uses
of the MSP, actual or hypothetical. Generically, we have denoted the number of
such uses by n. For instance, we might have predicted y1, ..., yn by use of MSPi

chosen because T (y1) = ... = T (yn) = i. If T (yn+1) 6= i then we might change the
MSP and possibly wish to reset n to 1. How often we evaluate T – at each timestep
as in this instance or only for selected timesteps – will have implications for how
often we permit ourselves to change the MSP.

We compare the CSE for an MSP to a threshold analogous to (2.13). Thus we
require a mean and variance for (2.14). We define

CECSE(wq) =
1
n

n∑

i=1

Ewq((Yi − EMSPT (yi−1)(Yi|yi−1))2|T (yi−1) = t) (2.15)

to be the conditional expectation of the CSE. We have written (2.15) as if T had cho-
sen the same MSP for n timesteps in a row and we have deleted the data predating
the last change of MSP. As with the form of the expression (2.14), one can imagine
several non-equivalent ways to form the sum in (2.15). Similarly, the conditional
variance of the cumulative sum of errors is

CV CSE(wq) =
1
n

n∑

i=1

V arwq((Yi − EMSPT (yi−1)
(Yi|yi−1))2|T (yi−1) = t). (2.16)

As with CURE, wq in (2.16) is unknown. Rather than replacing wq with an
average of models, we examine the variation in the error due to the MSP directly.
Since all we want is a threshold, we take a supremum. Thus, the MSP T (yn) = i is
inadequate when

CSE > SCCT = sup
wq∈Fi

(CECSE(wq) + L2

√
CV CSE(wq)) (2.17)

where Fi is the catchment area of MSPi, SCCT is the supremal cumulative con-
ditional threshold, SCCT = SCCT (i, n), and L2 = L2(n) is a slowly increasing
function of n. If one catchment area has only independent models and another
catchment area has dependent models then the rate of decrease of the standard
error for elements of the two classes may differ. In such cases, one would permit
L2 = L2(n, i) where i = 1, ..., k indicates the MSP, or equivalently its catchment
area.

Use of L2 compensates for the assumption, implicit in the sum in (2.16), that
the prediction errors are independent. In fact, they are not independent so (2.16)
alone will typically give an unjustifiably small standard error. In (2.17) the rate of
decrease in the standard error is L2(n)/

√
n, so a slow increase in L2 can be used

to inflate the standard error to a realistic size in dependent cases. Since similar
considerations apply to L1 in (2.13), we consider L2 only.

In general, it is unclear how to choose L2. One technique follows from extending
the approach of Zidek and Wang (2000). For the first n′ data points form the
empirical distribution F̂n′ . Generate many new independent sequences of n′ data
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points from F̂n′ . For each sequence form the expression in (2.15). A histogram of
these values gives the sampling distribution of (2.15) as a random variable. One can
then take the variance of the sampling distribution. Doing this for n′ = 2, ..., n gives
a sequence of pairs (log V arn′ , log n′). One can fit a simple linear regression model
to these n − 1 pairs so the coefficient of log n′ can be transformed to an exponent
of n.

The validity of the linear regression can be tested by seeing if a first (or higher)
order autocorrelation structure, or a moving average structure gives different results.
The dependence of the data going into the initial F̂n′ may be tested, when n′ is
large enough, by seeing if leaving out one or two data point makes only a small
difference compared to the independent case. If the difference is small this confirms
dependence and one would leave out a small number of well chosen data points so
that the information in the remaining data could be used to form an F̂n′′ where
n′′ represents the number of data points which, when treated as independent, have
information equivalent in magnitude to the information in the n′ original dependent
data points. One is led to do this because the adequacy of the empirical distribution
as an estimator for the true distribution relies on independence.

It is seen that (2.13) and (2.17) satisfy a weak form of the prequential principle
in that CUT and SCCT are partially independent of the procedure generating the
predictions. They are not entirely independent of the procedure, however, because
they depend on the aggregate properties of the catchment areas. This is a weakness
that may be difficult to overcome because of the generality of the model spaces that
might be considered.

2.3 A Tentative Algorithm. Now, if we begin at timestep 0 and choose MSPi to
predict y1 at timestep 1, and then continue using MSPi – whether out of modeling
arguments or because T (y2) = ...T (yn − 1) = i, then at time step n there are 4
possible ways to predict yn+1. They can be recorded as follows:

1. We might get
CURE ≤ CUT, CSE ≤ SCCT,

indicating good prediction in the present and a history of good prediction. In this
case, we use the current data point to update the parameter estimates of the model
currently in use. We use the updated model to generate a prediction for time n+1.

2. We might get
CURE ≥ CUT, CSE ≤ SCCT,

indicating a bad prediction in the present but a history of good prediction. This
leads us to hope that the problem is with the lowest element of the prediction, the
choice of model. There might be a higher level problem, namely a bad MSP, but
having a good history suggests that the MSP is still adequate. In this case, we
re-use the MSP to rechoose the model. Then we estimate the parameters in the
new model, using all data up to the present and get a prediction from it for the
next time step.

3. We might get
CURE ≥ CUT, CSE ≥ SCCT
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indicating a bad prediction in the present, and a history of bad enough predictions
that the cumulative error is inflated. Together, these bad predictions suggest the
higher level problem that the catchment area of the MSP is. In this case, we rechoose
the MSP and then use the new MSP to choose a new model. We use this newly
chosen model to get a prediction for the next time step.

4. The final possibility is that we get

CURE ≤ CUT, CSE ≥ SCCT.

This indicates the unusual case that we got a good prediction from a bad MSP. In
practice we choose the thresholds so that this will be mathematically impossible, or
its probability will be is very small. We return to this point in Section 3.

We comment that setting SCCT = 0 puts us in cases 3 or 4; this corresponds
to rechoosing the MSP at each timestep, as in de Luna and Skouras (1999). This
eliminates the use of (2.14), (2.15), (2.16). By contrast, setting CUT = ∞ puts us
automatically in cases 1 or 4. Since 4 is heuristically ruled out, we are left with
case 1: We never rechoose the MSP. This provides a sense in which the present
procedure generalizes existing methods.

3. Theoretical Results

For ease of exposition, suppose k = 2, so we have MSP1 and MSP2, with
catchment areas F1,n and F2,n, respectively, defined as in (2.1) by the loss function,
so that T (Y n) = 1 or 2. The case k ≥ 3 is similar. Our result, informally, is that if
T can be used to identify the right catchment area asymptotically then using T to
choose an MSP as in Section 2 gives a smaller asymptotic expected squared error
than the constant use of either of the MSP’s from which T chooses.

3.1 Optimality of the method over individual MSP’s. The effectiveness of the
adaptive method depends on T . A good T will give a useful MSP reliably. One
criterion for this is the following.

Definition: The function T (Y n) is consistent for the catchment areas Fi,n if
and only if for any i and any sequence wqn in Fi,n, the indicator function χT (Y n)=i

converges to 1 in wqn probability.

The consistency of T means that T chooses the right MSP, or set Fi, regardless
of which element in Fi is true. We have dropped the subscript on the catchment
area for brevity and to indicate the catchment areas for n +1 must be chosen to be
compatible with the catchment areas at time n.

Theorem 3.1. Let T be any consistent choice for MSP’s suppose we recalculate
T at each timestep using all accumulated data. If all the elements of F1 and F2

have uniformly bounded second moments, i.e., that is, there is an M > 0 so that for
all densities wq and all times i, EwqY

2
i < M , then we have that for any wq ∈ F ,

lim infn→∞[EY n+1(Yn+1 − EMSPi(Yn+1|Y n))2

−EY n+1(Yn+1 − EMSPT (Y n)(Yn+1|Y n))2] ≥ 0, (3.1)



combining model selection procedures for online prediction 241

in which the expectation is taken with respect to the mixture distribution of Y n+1,
i.e., w.r.t.

∫
w(θ)q(yn+1|θ)dθ .

Remark 1. There are many consistent choices for T . For instance, de Luna
and Skouras (1999) choose T to be the index of the MSP minimizing the relative
cumulative predictive loss. Indeed, de Luna and Skouras (1999) establishes consis-
tency for the catchment areas they use, using all past predictions. Alternatively,
one can define T to give the catchment area closest to the empirical distribution
function. One can also use statistics from hypothesis tests to choose a catchment
area provided that the probability of type one and type two errors goes to zero.

Remark 2. The assumption that the argument of T is the entire data string
up to the time of prediction can be relaxed. For consistency of T it will usually be
enough to use those outcomes yi for which in the past MSPi was actually used.

Proof. Let

D(k, T, wq) = (Ewq(Yn+1|Y n)− EMSPk
(Yn+1|Y n))2

−(Ewq(Yn+1|Y n)− EMSPT
(Yn + 1|Y n))2, (3.2)

and let ∆ denote the difference within the liminf of (3.1). That is, set

∆ = EY n+1(Yn+1−EMSPk
(Yn+1|Y n))2−EY n+1(Yn+1−EMSPT

(Yn+1|Y n))2. (3.3)

Then, by adding and subtracting Ewq(Yn+1|Y n), it is seen that

∆ = EY nD(k, T, wq). (3.4)

(The two squared terms cancel each other, and both rectangular terms are zero.)
For consistent T we have that

EY n (D(k, T, wq)−D(k, i, wq)) → 0, (3.5)

when wq ∈ Fi. So, adding and subtracting EY nD(k, i, wq) in (3.4) means it is
enough to examine the asymptotics of EY nD(k, i, wq). This is easy: To see that
(3.1) holds note that for fixed i, MSPk satisfies

EY nD(i, i, wq) ≤ EY nD(k, i, wq),

because (2.1) guarantees MSPi is the best MSP to use when an element of Fi is
true.

Thus, using a consistent T improves the squared error performance of predictors.
This is partially because we are enlarging the collection of models from which we
can choose, but also because we are only using an MSP where it beats out the other
MSP’s.

Theorem 3.2. Assume the conditions of Theorem 3.1. In addition, suppose that
both MSP’s are consistent and let q = qθ denote the densities in the true parametric
family, equipped with prior w. Then, in squared error distance with respect to wq,
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we have that the adaptive predictor based on T is asymptotically equivalent to the
asymptotically best predictor. That is:

EMSP (T )(Yn+1|Y n)− Ewq(Yn+1|Y n) L2

→ 0,

as n →∞.
Proof. For simplicity, we use inequalities such as (a1, ..., ak)2 ≤ K

∑
a2

i with-
out further comment, letting K vary from occurrence to occurrence. When wq is
in the catchment area Fi, we can add and subtract EMSP (i)(Yn+1|Y n) to get

Ewq(EMSP (T )(Yn+1|Y n)− Ewq(Yn+1|Y n))2

≤ KEwq(EMSP (T )(Yn+1|Y n)− EMSP (i)(Yn+1|Y n))2

+KEwq(EMSP (i)(Yn+1|Y n)− Ewq(Yn+1|Y n))2. (3.6)

So, it is enough to show both terms in (3.6) go to zero. The first term can be
decomposed into sets on which T assumes a specified value to give

Ewq

(∑

j

χT=jEMSP (j)(Yn+1|Y n)− EMSP (i)(Yn+1|Y n)
)2

. (3.7)

The contribution of the term with j = i is zero. Dropping it and using the above
inequality, we get

K
∑

j 6=i

EwqχT=j(EMSP (j)(Yn+1|Y n)− EMSP (i)(Yn+1|Y n))2 (3.8)

as an upper bound on (3.7). In turn, (3.8) is bounded by

K
∑

j 6=i

EwqχT=jEMSP (j)(Yn+1|Y n)2 + K
∑

j 6=i

EwqχT=jEMSP (i)(Yn+1|Y n)2. (3.9)

All the terms in (3.9) go to zero: Observe that by dropping the indicator func-
tion, the argument of the first expectation is bounded by EMSP (j)(Yn+1|Y n)2. By
the second moment assumption it is seen that EwqEMSP (j)(Yn+1|Y n)2 is bounded.
Consequently, by the dominated convergence theorem, each of the terms in (3.9)
goes to zero because, under wq, χT=j converges to zero in probability, for j 6= i. The
second term in (3.6) is similar, but the decomposition is over sets on which MSP (i)
gives the members of Fi, and the consistency of MSP (i) permits the domination.

2

Thus, when T is consistent, and the MSP’s are consistent, the adaptive predictor
ultimately uses the same MSP all the time and gets the asymptotically optimal
predictor all the time. In this context, the benefit is in small sample behavior.
More generally, one does not have consistency – nevermind a stable law to uncover
– but the present technique is still applicable.

In Section 2 we indicated that L2(n) in (2.17) should be chosen so that the
fourth possibility is ruled out. Our next result shows this is possible. We write
SCCT (i) to emphasize the dependence on MSPi.
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Theorem 3.3. Suppose a Central Limit Theorem holds for the sequence of
cumulative sums CSE in (2.14) with rate φ(n)/

√
n, where φ(n) is nondecreasing,

when wq ∈ Fi. Let ψ(n) be a non-decreasing sequence. Then, as long as L2(n) =
ψ(n)φ(n) in increasing we have that for wq ∈ Fi

Pwq(CSE ≥ SCCT (i)) → 0.

Remark. The choice of φ(n) depends on the rate in the CLT for the catchment
area. Suppose the data is independent and has a catchment area of independent
models. Choosing φ(n) = 1 means ψ(n) must be increasing because, if ψ(n) is
constant one gets a normal percentile in the limit below. If one chooses φ(n) =√

log n, however, then ψ(n) can be constant. If the data are dependent then φ(n)
will be increasing and the choice of ψ may be more problematic.

Proof. For wq ∈ Fi, and SCCT (i) as in (2.17), we can remove the supremum
to get

Pwq(CSE > sup
wq

(CECSE(wq) + L2(n)
√

CV CSE(wq)))

≤ Pwq(CSE > (CECSE(wq) +
ψ(n)φ(n)√

n

√
nCV CSE(wq))). (3.10)

By the CLT, (φ(n)/
√

n)
√

nCV CSE(wq) converges to a constant. By the LLN, the
CECSE converges to a constant also. Thus, since CECSE is positive, the slow
increase in ψ(n) forces (3.10) to go to zero.

Remark. Theorem 3.3 uses the detailed structure of the procedure in Section
2, whereas Theorem 3.1 only requires consistency. We see that Theorem 3.3 rules
out the fourth possibility because it gives that for every wq ∈ Fi, Pwq(CURE ≤
CUT,CSE ≥ SCCT (i)) ≤ Pwq(CSE ≥ SCCT (i)), which goes to zero. The choice
of CUT is also based on a CLT so the three levels of parameter estimation, model
choice by an MSP, and choice of MSP are dissociable.

3.2 Inclusion of finitely many explanatory variables. Now, suppose we have l
explanatory variables so Yi is distributed as f(x1,i, ..., xl,i, θ) plus an error term
and it is understood that the first l entries in the parameter θ are coefficients of
Xi = (X1,i...Xl,i). Our task is to predict Yn+1 using y1, ..., yn and X1, ..., Xn+1.
The optimal predictor under squared error loss is

Ŷn+1 = EMSPT (Y n,Xn)(Yn+1|Y n = yn, Xn+1)

=
∫

yn+1p(yn+1|θ, Xn+1)w(θ|yn, Xn))dθdyn+1 (3.11)

which is a parallel to (2.3). In (3.11), the parametric family p(yj |θ,Xj) is chosen
by MSPT (Y n,Xn) upon receipt of Y n = yn and Xn. Likewise, w(θ|yn, Xn) is the
posterior for θ given yn and Xn using the prior w(θ) and the parametric family
p(yj |θ,Xj) chosen by MSPT (Y n,Xn) upon receipt of Y n = yn and Xn.

Here we are assuming that a nonstochastic countably infinite sequence of design
points X1..., Xn,... at which measurements will be made, has been fixed before the
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data Y1, ...Yn are collected. This is unrealistic in that design points can be chosen
adaptively, however, we ignore this rather than putting a distribution on the Xi’s.

Now, analogous to (2.6), and (2.7) to assess Ŷn+1 we examine the conditional
variance holding yn, Xn and w(θ)q(y|θ, X) fixed. This is

E(Yn+1|yn,Xn+1),wq(Yn+1 − Ŷn+1)2

=
∫

(yn+1 − EMSPT (yn,Xn)(Yn+1|yn, Xn+1))2m(yn+1|yn, Xn+1)dyn+1, (3.12)

where

m(yn+1|yn, Xn+1) =
∫

q(yn+1|θ,Xn+1)
w(θ)q(yn|θ, Xn)∫

w(θ′)q(yn|θ′, Xn)dθ′
dθ. (3.13)

Replacing wq in (3.12) by an average as in (2.10) gives a form for the conditional
mean. The analogue to (2.9) is

V ar(Yn+1|yn,Xn+1),T ((Yn+1 − EMSPT (yn,Xn)(Yn+1|yn, Xn+1))2), (3.14)

in which again wq can be replaced by the average.
The forms of CURE, CUT, and CSE are otherwise unchanged, however, SCCT

is now based on the conditional expectation of the cumulative sum of errors

CECSE(wq) =
1
n

n∑

i=1

Ewq((Yi−EMSPT (yi−1,Xi−1)(Yi|yi−1, Xi−1))2|T (yi−1, Xi−1)=t)

(3.15)
and the conditional variance of the cumulative sum of errors

CV CSE(wq) =
1
n

n∑

i=1

V arwq((Yi−EMSPT (yi−1,Xi−1)
(Yi|yi−1, Xi))2|T (yi−1, Xi−1)=t).

(3.16)
At each time n we have the same four possible actions as before. We show that
again choosing an MSP adaptively by the use of a consistent T performs better than
any one of the MSP’s, reduces to the usual predictor, and the fourth possibility has
asymptotic probability zero of being chosen.

Theorem 3.4. I) Optimality: Assume the hypotheses of Theorem 3.1, and that
the ranges of the explanatory variables are compact.

Then, for any wq ∈ F ,

lim inf
n→∞

[EY n+1(Yn+1 − EMSPi(Yn+1|Y n, Xn))2

− EY n+1(Yn+1 − EMSPT (Y n,Xn)(Yn+1|Y n, Xn))2] ≥ 0, (3.17)

in which the expectation is taken with respect to the mixture distribution of Y n+1,
i.e., w.r.t.

∫
w(θ)q(yn+1|θ, Xn+1)dθ .

II) Reduction: Under the assumptions of Theorem 3.2 and part I), the adaptive
predictor reduces to the usual predictor. That is,

EMSP (T )(Yn+1|Y n, Xn)− Ewq(Yn+1|Y n, Xn) L2

→ 0, (3.18)
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as n →∞, for any wq ∈ F .
III) Simplification: Assume the hypotheses of Theorem 3.3 and that the ranges

of the explanatory variables are compact. Then, for any wq ∈ Fi,

Pwq(CSE ≥ SCCT (i)) → 0,

so the fourth possibility never happens asymptotically.
Proof. The proofs of Theorems 3.1, 3.2 and 3.3 transfer to this new setting

with the changes in definition described from (3.11) to (3.16). 2

We comment that there is nothing sacred about squared error loss. It is seen
that one can replace squared error loss in (2.1) by any other loss function to get
a different partition {F1, ..., Fk}. Likewise, the optimal predictor changes from the
conditional mean. Then, one would use the new loss function to assess the difference
between the predictor and the next outcome, analogously to (2.6).

4. Data Retention and Model Mis-specification

It is axiomatic in statistics that one wants to use as much data as possible.
However, this intuition is not entirely correct. For instance, the amount of data one
should retain can depend on the goals of the analysis. In a calibration setting, Fearn
(1992) considers the regression of Y on X: He notes that if we have a lot of data and
it tends to accumulate centrally, we get a better MSE performance for predictions
if we throw out some of the central data. A lot of data in this context means
that we can estimate the regression coefficients with good precision. Throwing out
some central data moves our predictions closer to what we would have got with a
designed experiment that spread the X’s uniformly over the interval or, ideally, put
all of them at the endpoints. On the other hand, if one really wanted to estimate
the parameters one would retain all the data.

Looking closer at Fearn (1992) one sees that the gain in MSE performance is
chiefly for predictions made relatively far (more than 2 σ) from the mean. Fearn
(1992) shows that when one is most concerned with MSE far from the mean, re-
gressing Y on X after discarding data gives predictions that are better than what
one would get from regressing X on Y and inverting. The extra data in the centre,
while representative of the population for which one wants to predict, is ‘misleading’
because it is too representative: The improvement in central performance is at the
expense of how well we handle atypical incoming data points.

Thus throwing out data in response to model mis-specification can give better
predictive performance. This suggests a general principle: One wants to retain all
the data only when model-misspecification is negligible.

Why does this make sense? Consider the case where one model, say P , is true
and we unwisely use a parametric family Pθ which does not contain P . It is well
known that Pθ̂ will converge to the member of the parametric family, Pθ∗ closest
to P in relative entropy distance. However, the issue is to compare the distance
between P and Pθ∗ and the distance between Pθ∗ and Pθ̂. If it is possible to throw
out data to make Pθ̂ closer to P rather than closer to Pθ∗ it would be helpful. Of
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course, P is unknown, but the principle remains because of Fearn (1992) – without
knowing the true model, we still know how to allocate the X’s optimally.

By contrast, de Luna and Skouras (1999) is a time series setting in which model
mis-specification is assumed not to exist. They rechoose the MSP at each time step
using all the accumulated data. This is sensible if we have a class of distributions
which contains the true distribution, and all the data is representative of the same
identifiable member of the family, and we can uncover it rapidly as data accumulate.
(Rapidly means we don’t get trapped in a local optimum.) This is the the setting of
Theorem 3.1. In effect, we uncover the true model so fast that the estimated model
gives useful predictions, i.e., prediction is a function of good model selection.

The procedure developed in Section 2 is useful even when model mis-specification
is a problem, and it is suboptimal to retain all data when one changes from one
MSP to another, or reuses the same MSP for many time steps.

Consider an example which is at the opposite extreme of de Luna and Skouras
(1999) and Theorem 3.1: Suppose the data stream one is trying to predict is a
sequence of strings of finite length. Suppose the length of the strings is variable but
cannot be modeled. Also, assume that the data from different strings are unrelated,
with unrelated distributions, possibly in different catchment areas. Within a string,
the data follows a distribution known to be in a relatively small class. It would be
natural to suspect that a change in MSP is associated with the arrival of a new
string, although the reverse need not be true.

Since we have independence and nonidenticality from string to string it makes
sense to throw out all data preceding the most recent change in MSP, because earlier
data cannot help make predictions. Our technique can accommodate this: Once
the MSP has been rejected, one can use only the most recent data that led to the
rejection of the MSP (the data where CURE exceeded CUT so often that CSE
ended up exceeding SCCT ) to rechoose an MSP by recalculating T . Then one uses
this MSP until it’s rejection is forced by too many errors of too great a magnitude.

Consider a variant on the sequence-of-strings example. Suppose, that within a
string the data are dependent and the degree of dependence assumed by the models
in the catchment areas underrepresents it. Then, you will believe you know more
than you do as a consequence of the mis-specified dependence structure. To get
standard errors for prediction that are closer to the ones one would get from using
the true model one would have to throw out some data – and this is within a string!
In short, this is a case in which using all the data in a wrong model does worse
than using less data in the same wrong model. By contrast, if the data is more
independent than you think you will have been conservative.

Now, the key question in a predictive context is which data to retain, as well as
what to do with it. In the present procedure, there are three places that data are
used: Choosing an MSP by use of T , making a prediction (use the MSP to choose
a model, then estimate the parameters), and evaluating the thresholds to assess
performance. There are several settings in which different strategies for the use of
data may be optimal, and in many cases it will be unclear which to use because the
optimal strategies are dependent on the unknown model class.

As a generality, when using T to choose an MSP, we suggest it is better to retain
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more recent data, or functions of data that are most tied to recent data e.g., the
last few residuals in a regression setting. Also, as a generality, it may be better to
use thresholds and form predictions from all previous uses of the MSP chosen. Note
that in this proposal, one does not in general rechoose the MSP at each timestep as
in de Luna and Skouras (1999). Instead, one uses a chosen MSP until its use leads
to a CSE that is larger than its SCCT , rechoosing the MSP only when it fails. This
is intermediate between using full data retention to rechoose at every timestep and
throwing out all data from past MSP’s as in the first sequence of strings example.
This is intended to approximate the most typically optimal procedure and be not
too bad in other cases.

With Fearn (1992) in mind, we suggest refining the procedure for making predic-
tions and setting thresholds by not retaining all data from the previous uses of the
MSP. That is, above a threshold on sample size to ensure the precision of estimates,
we should throw out central data between changes of MSP particularly as it recedes
into the past, especially in a regression context. This is similar to throwing out
outliers, except that the central values are the outliers relative to detecting when
to change the method of prediction. This makes sense because the cases most likely
to make us want to change models or MSP’s are those for which the X are far from
their mean value.

An additional problem with rechoosing the MSP at every timestep is that the
variation introduced by the use of T is unexamined: We may end up overfitting the
data. Thus, there are circumstances in which it is better not to use all the data all
the time and in such cases our algorithm here is better than rechoosing the MSP at
every timestep. The improvement will be in computational complexity also, but our
argument is based on better prediction in settings where model mis-specification is
unavoidable.

5. Discussion

This paper has three main points. The first is to present a general form of a
technique for online prediction that combines the use of several MSP’s. The second
point was to establish that the use of several MSP’s gives better squared error
predictive performance than restriction to a single MSP. The third point was to
argue that predicting in the presence of model mis-specification may be improved
by omitting some data.

There are several issues that impinge on this and deserve comment. First, the
present method should interact well with Bayesian model averaging. One can, for
instance choose a neighborhood around the model chosen by our procedure, and
average over it to get predictions. Alternatively, one can choose a neighborhood
around the models chosen by each MSP, average within each of those neighborhoods
and then average over the local averages. The benefits of Bayesian model averaging
are probably dissociable from the benefits of the present method. A natural way
to define neighborhoods in the predictive context is by using Shannon’s Mutual
Information to topologize the collection of all models. Models that are close in
information should represent similar physical assumptions.



248 b. clarke

Second, there are technical issues that require further work. Is there a clear
example showing that the catchment area of one MSP (say BIC with models having
few parameters) is meaningfully different from the catchment area of another MSP
(say AIC with models having many parameters)? Is it reasonable to do as we have
done in terms of regarding Fi,n as being Fi? This assumption permitted us to
imagine using the natural extensions of representatives of the catchment area for
all n. We anticipate there are cases in which Fi,n will be stable as n increases or at
least can be characterized as a function of n as n increases; this was done implicitly
by de Luna and Skouras (1999). Moreover, it is not clear how many MSP’s one
should use; too few or too many will lead to different problems.

Third, the details of applications in many specific cases beyond de Luna and
Skouras (1999) remain to be worked out. How much past data to use, which of the
past data to use, and how to use it remain unexplored outside several examples and
heuristics. We may want to retain preferentially the recent noncentral data that
led us change MSP’s. Clearly, the more often we re-choose our MSP the more the
information in our data will be used to choose a catchment area and there will be
less information to permit use of the MSP and parameter estimation. This may
weaken our predictions by inflating their variance.

Finally, the central principle might be that the more frequently we wish to use
T to rechoose the MSP, the more data we must retain, and so the less model mis-
specification we can tolerate. Equivalently, the less frequently we re-use T , the less
data we need to retain, and the more model mis-specification we can tolerate while
still getting predictions that are no worse.
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