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Abstract

An information theoretic quantity plays a key role in the application of Bayes
methods of parametric density estimation to universal data compression,

to composite hypothesis testing, and to stock market portfolio selection.

This quantity is the Kullback - Leibler distance between the true density and the
mixture of densities with respect to a prior. It is shown to be approximated by a con-
stant plus one half the logarithm of the total Fisher information, which is close to
(d/2)log n, where d is the dimension of the parameter space, and n is the sample size.
Consequences for the applications are discussed.
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1. Introduction

The Kullback-Leibler number is a measure of distance between two densities which
arises naturally in certain contexts. It can be used as a loss function in estimation, see
Aidtchison [1], Kullback [17]; as a measure of redundancy in coding problems see Davisson
[13]; and, as the error exponent for testing hypotheses see Bahadur [2], Blahut [6]. It defines
a mode of convergence which is stronger than L, and Hellinger distance, but weaker than the
chi-square distance between distributions, Csiszar [12]. Intuitively speaking, it puts a higher
proportion of weight on the tails of distributions.

Here we develop an asymptotic expression for the Kullback - Leibler number between fre-
quentist and Bayesian distributions, and apply the result to several contexts.

Let Pgy be a family of probability measures, indexed by a d -
dimensional parameter vector 8. Let random variables X, X,, ..., X, be conditionally
independent given © with joint product distribution P§ . A frequentist assumes that there is a
fixed, but unknown, true parameter value 6,, for which the data is governed by P§ . A
Bayesian assumes a prior density function w(8), so that the ( marginal ) distribution for the
data is M, = [P% w()d® , the mixture of the product distributions obtained by integrating
out the parameter.
We examine, in detail, the Kullback - Leibler distance between the joint distributions
6, and M, . It has been shown that under very general conditions, which include infinite

dimensional parametric families, that

lim = D@L | |M,)=0,

n—>ow I

see Barron [3], 4]. In contrast, the distance between any two distinct product measures
(Vr)D(PE, | | PE)=D(Pg, | | Pg) remains fixed away from zero.

Thus, for large sample sizes, the Bayesian distribution A, , which we know, is not far from
the frequentist *‘true” distribution P§ , which is unknown.

In this paper we show that for smooth parametric families the Kullback -
Leibler number is approximated by one half the logarithm of the Fisher information minus
the logarithm of the prior density:
DL, 1 1M,)=tog 17,0, |-logw(@) - Flog2me +,. (D
where ,(1) = 0 as n —> oo, see Theorem 4. 1. Here, [,(8,) =ni(0,) is the total Fisher
information in the sample, which has determinant | I,(8,) | =nr¢ |1(8,) |. Thus,

DPg | _Eavzmmmyom: +c,
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where ¢ = log[(2ne vm [1(8,) _M\s\, {6,)]1 . So, the divergence of the Bayes and frequentist
distributions is precisely characterized. Although D(P§ | | M,) slowly tends to infinity, the
divergence per sample, (17)D(P§ | | M,), is of order (log n ¥n. The (d/2)log n term has
previously been identified for certain cases in universal source coding by Krichevsky and
Trofimov [16], and Rissanen [20].

The asymptotic distribution and the asymptotic expected value of the log density ratio is
determined. It is seen that

(X 1 X,)
p X1 X, 16,)

2| log +D(Pg, | [ M)
converges, in distribution, to %7 — d where 7 has a chi-square distribution with d degrees of

freedom.

After defining some notation in section 2, we discuss implications of the main result in
section 3. It is seen that D{(Py" | | M,) is: (A), the cumulative risk of Bayes estimators of
the density function;

(B), the redundancy of a source code based on M,,; (C), the exponent of error probability for
Bayes tests of a simple versus composite hypothesis;

and (D), a bound on the financial loss in a stock market portfolio selection problem. In sec-
tion 4, we formally state the conditons under which we have proved the theorem. In section
5, we state the two approximations used in the proof of the theorem, which is given in section
6. In appendices,

we give the proofs of the two approximations, and prove two lemmata which are used in the
proofs of the approximations.

The proof of our main theorem hinges on a technique for approximating integrals first
introduced by Laplace in 1774, see Stigler [21], for a special case of the integral
Ipelry, - - %, )W (8)d0

Laplace’s approximation for such integrals is mow a standard technique in statistical
analysis. Walker [25], and Tiemey and Kadane [22], provide two examples and some general
theory is presented by De Bruijn [14].



2. Notation

Let (X.B) be a measurable space and P={P, | 8 €Q} be a collection of probabilities,
each of which is defined on it. These probability measures are assumed to have probability
density functions pg(x), with respect to a fixed sigma finite meaure A{dx), which are distinct
for distinct 8 . Assume the parameter space is contained in some R¢, and is an open set or
the closure of an open set. For each natural number n, assume that X, is a random variable
defired on (X,B), taking values x, , and that <X >, = X" is a sequence of independently
and identically distributed random variables with outcomes denoted x™.

Given that the true distribution is an element of the parametric family P, the problem is to
estimate the density from the random sample.

We use the Kullback - Leibler number as an assessment of how much one distributions
on a measurable space differ from each other. For densities p, q the Kullback - Leibler
number is

5 lae 2D
UQ _ _Qvl.m‘ﬁu—o.u Q@nvﬂ

or equivalently denoted by
D |10

Except where noted otherwise, we use the natural logarithm and denote it log.

If a prior distribution is assumed, then the marginal density function for
X", with respect to A", is the mixture of the conditional densities p, (x" | ®=IITp(x; | 8)
obtained by integrating with respect to the prior, ie. ,

m, (X")=] w @)p (X" | 6)d8,

where w is the density function for the prior with respect to Lebesgue measure

on RY. We denote the mixture distribution itself by M, , and use the notations pg(x) and
p(x | 9) interchangably as convenience dictates. Note that although X" is a sample of n
independently and identically distributed random variables under pg , under m, they are no
longer independent, in general. However, the dependence on the unknown parameter has
been removed. Assume that 6, is the true value of the parameter. A natural question is:
how different

is m, (X™) from p(X"™ | 6,) i. e., how much accuracy is sacrificed if we model the density
by m,. We answer this question by examining D(P§ | | M,). Let 8 be the maximum
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likelihood estimate for 6,, the M.L.E. , and,
w\u

HO=Eel 30,06,

=P X |04

be the Fisher information matrix. We adopt the convention that E denotes expectation with
respect to Py , and we omit superscript n’s on product measures where the meaning is clear

from the context.

3. Applications
A. Implications for Density Estimation.

One natural estimator of p (x | 0) at any given x is the mean of the posterior distribution
Balx; X™)=lape(xIw® | X")d6.
Observe that this estimator is the predictive density
D) =m&Xy =x | X™).
Adapting a result due to Aitchison [1], we have the following.

Proposition 3.A: P, is the Bayes estimator of the density function. The cumulative risk
of this estimator is

YE D@, | 150=D@5 | | M.
k=1

Consequently, under the conditions of Theorem 4.1, the cumulative risk is approximated
by (d/2) log n + ¢, and the average risk ()Y E D(p | | z) converges to zero at rate (log
n)/n .

Proof- The information inequality, D(p | | g) 2 0, with equality if and only if p =g,
implies that j, is the Bayes estimator,

since, for any other density q, the posterior average of the risk is seen to equal

[P@e | [aw® | X)d8=[ow(® | XD (o | 15,)d8+D@, | 1)

So, we see that the minimum is achieved when the second term is zero, i. e., wheng =g, .
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By Bayes rule, p, equals the predictive density, which is

m wA.H§+Hv
x&@mx+mﬂ.ﬁa+w _ Név = a+|§
My, (x™)
So, by the chain rule for the Kullback-Liebler, number we have that
D@Py | IM,)=3SEDP®y | |B),
k=1

where each summand is the risk in estimating the density using the Bayes estimate based on k
observations. O

We remark that the individual risk terms E D(Pq | | ) also converge to zero as

n -> 0. This follows from noting that
ED@®y, | |12,)=D®5 | | M)»DEE" | [ M,),

and applying the theorem to each term on the right hand side. Thus, the posterior mean den-
sity estimator is consistent for the density in expected Kullback - Leibler distance. Note that
cumulative risk of the order (d/ 2)log n suggests that the risk £ D(Pg | | B.) is of order

d/(2n). This same rate, d/(2n), was identified by Cencov, [7] pp. 434, for the maximum likel-
ihood density P 4.

B. Applications to Universal Source Coding.

Consider the problem of providing a noiseless source code with small expected length
for a block of discrete data X"=(X,, ...,X,), when the discrete probability density is
assumed to be a member of P but otherwise unknown. Many have studied this problem
extensively, for instance Davisson [13]. Recall that if

o X' — {0,1}"
is a uniquely decodeable code with codelengths I(¢p(X™)), where the asterisk indicates the set
of all finite length strings of elements of the set, then
Q,(X") = =L (X))
defines a subprobability mass function on X" , by the Kraft-McMillan inequality. The redun-

dancy of a code @ ={ 0(X") | X"eX"} is the difference between the expected length of a
message and its lower bound, the entropy:
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R,(®, Po) = E[l($(X" vv,,amﬁwmwﬂz
0,

Eomﬁlfi.x

Q" @) T Pe(X™)

=Dy, | 12",

where log is taken base 2. Thus the redundancy is the Kullback - Leibler number. We want
to choose ! so as to minimize the redundancy. Among all subprobability mass functions Q,
the one which minimizes the average of D(p§ | | ¢™) with respect to a prior w is the mix-
ture m, . It is well known that, for all pg, the Shannon code based on m, , i.e., the one with
code lengths

7y = [log — L
10x™) = [ log sa%vf

has redundancy within 1 bit of D (p§ | [ m,).

The concepts of noiseless source coding of discrete data may also be applied to the case
of continuous random variables which are arbitrarily finely quantized. In the sense made
clear by the following proposition, the relative entropy remains the redundancy for non-
discrete sources. If a noiseless code is specified for every finite quantization of a nondiscrete
source,
we define the redundancy to be the supremum of the redundancies over all such quantiza-
tions.

Proposition 3.B: For a nondiscrete source, the redundancy of the Shannon code based
on M, is D(P§ | | M,), to within one bit.
Thus the redundancy of the Bayes code is given asymptotically by

d . Wwom det 1(8,) — log w(6,),

under the conditions of Theorem 4.1.

Proof: For any finite partition =, of X”, we can specify a code book @, by use of the
Shannon code based on the probability measure restricted to = . For the Shannon code we
have an explicit codelength formula:

1@, A) = [log 1

_1
0, (A)

and the redundancy is:
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Ren(@,.Pg)= 3, (b, (A)PEAPEA)log(——).
Aem mQC

So, to within one bit, the redundancy on the partition is the discrete divergence
SacPolA)Nog PE(AYQ,(A). Taking the supremum over all possible partitions gives
D(PE | | Q,) . by using a well known theorem, see Kullback,

Keegel and Kullback [18], pp. 6-7. If Q, is replaced by M, , then we get the Bayes code,
and the result is the asymptotic least upper bound on the redundancy. 0

Rissanen [20], gave (d/2n)log n as a lower bound on the redundancy, with error O(log n
) . Our extension identifies the constant so that we have a better approximation: o(1). The
most stringent hypothesis in [20] is that 6 be asymptotically normal. Our hypotheses are
about as strong. Sufficient conditions for the asymptotic normality of 8 are given by Leh-
mann [19] pp. 429-430, and Cramer [11] pp. 500-501.

While we have assumed a bound on the expected supremum of the squares of the second
derivatives, both Lehmann and Cramer assume a bound on the expected supremum of the
absolute values of the second and third derivatives.

We have used a higher moment rather than a higher derivative.

C. An Application to Hypothesis Testing.

Consider the hypothesis test H: Pg versus K: Pg, 80, . We constrain that the pro-
bability of type 1 error is not more that ¢; € (0, 1), and examine the performance of tests in
terms of the probability of type 2 error averaged with respect to a prior density w(8) over the
class of alternatives K. Let c(¢) be the 1 —o quantile of a centered chi-square random vari-
able with d degrees of freedom, ie., %Gsw - FE xm >c¢)=0 . The (Bayes) optimal test com-
pares the test statistic log m, (x"Yp (x" | 0,) to a critical value ¢ =¢,{(0;). The following
proposition shows how to select the critical value in practice. Specifically, Theorem 4.1 gives
a convenient approximation to it. Moreover, the average power of the test is shown to be
related to D.

Proposition 3.C: The asymptotic level o critical value for the Bayes test is
Dy | | M)~ Wn (e;) and the optimal average probability of type 2 error is, to within a

constant factor dependent only on 0,

-D(P3, | | M,)
0 =e ,

_a 4
n 2(2re)?w(®,)
Vdet 1(8,)

?
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in the sense that there exists a bounded interval [ L{(ct), U(e) ] such that every test with
type 1 error less than or equal to o satisfies

liminf [ log o + D(PE, | | M,) 12 L(ay),

n —* oo

and there exists a test with type 1 error ¢; for which the upper bound

limsup [ log oy + D(PF, | [ M,)]<U(y)

n —> o
holds.
The functions L and U can be expressed in terms of ¢ (¢x).
Remark 1: This extends Stein’s lemma, see Chernoff [9], or Bahadur [2], for simple versus
simple hypotheses, say Pq versus Pg
for some 6 # 0, , which asserts that
o = mécumn _ _wmv.

Remark 2: The classical likelihood ratio test, L.R.T., uses the  statistic
log [ p(x™ | 8Yp(x™ |6,)]. Proposition 1 relates the likelihood ratio test to the Bayes test:

since

X" n 18 X"
log 7 X7) = log p X" 16) + log ek v>
pX" 16,) p&X" [6,) pX™ |0

n A
~ _omnﬁm|_®v + muomw%ﬂ + log detl* ()71,
p&X" 18,) 2 " n
we see that the L.R.T. and the Bayes test are asymptotically equivalent,

a fact which has been previously observed in specific cases. Moreover,

has an asymptotic chi-square distribution with d degrees of freedom, see Wilks [26].

~

Proof: First we prove the lower bound statement. Let C, be any critical region with
Py (C,) <oy, and let A, be the “‘typical set””

A, ={x" 110g 222 D@, | | M)~ 2e(@)

m,_ (x™)

where o > ¢ . Observe that
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lim Pg (A,)=o.

n —> %o

Then the average probability of type 2 error satisfies

i i DPE, | M)+ 2ce)
Oy =M, (CPy2M,(Cy;, NA,)Ze -

8 (Cf (ca A,)

[ P§, (C5) - P§ (AD].
Since

i
D@L, | 1M+ Lo (a)
Ze 2

lim [P (CH-PE AD1=0a—ay>0,
n =7 oo
we may take logarithms to obtain
limin [ log o+ D(P% | | M,) ]2 w%e + log (0% — o).
n—r oo
where o € (¢, 1). Note that ¢ is strictly decreasing in o and ranges from —FE xw to oo and
log (o0 — ¢ty) is strictly increasing. It is possible to get an implicit algebraic relation which
must be satisfied by the o which maximizes the right hand side. In particular, we chose

o = (0t; + 1)2 so as to get a lower bound of the form claimed.

Now we prove the upper bound. The Bayes optimal test is of the form reject H if and
only if (X;,...,X,) e C, , where C, is the critical set

n
6,
C,={x :omw@|_vm$.
m, (x")
Choosing

c (o)
t=D(P§ | _Eﬂavlq
we have that

o0g 210 ppn | ag,
m, (")

converges weakly to a chi-square random variable with d degrees of freedom.
So, the limiting probability of type 1 error is

lim Py (C,) = 0.

" —> e

By Markov’s inequality, the average probability of type 2 error satisfies

Moy <ot —o 0T L1 M) + 2-ce)
8” n ns - € =€ - °
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Thus, taking logs, and rearranging gives

limsup [ log 0+ D(P3, | | M,)1< Se(on),

It~ oo

so that ¢ (¢, 2 upper bounds the limit superior of the left hand side. O
D. Application to Portfolio Selection Theory.

Let X, X,.....X,, .... be a sequence of stock market return vectors, where the coordinates
X;; denote the multiplicative factor by which dollars invested in stock j, j=1...., k, are
increased/decreased during the i* day, or other investment period. At the beginning of each
investment period stocks are bought or sold so as to result in a portfolio of stock proportions

k
b=(@0,...,b), b; 20, ¥b; =1 . If the true distribution Py were known, then the
j=1
portfolio b = b (Pg,) would be chosen to acheive
w* = max E log b7X

80 as to achieve maximum possible exponential growth rate of wealth, see Kelly [15]. Not
knowing the true distribution, we may base our portfolio b, =5, Qwa _1) for day n on an esti-
mate m: of the true distribution. Barron and Cover [5], have shown that the resulting drop in
exponential growth of wealth is bounded by

1 .
— ED(Pg, | | Py

;
VR

In particular, if we use the predictive density estimate, p,(x) = m(x, , ; =x | x") then the
bound on the decrement is precisely (14)D(P§ | | M,) , the very quantity approximated by
our theorem. The Bayes sequential investment strategy, which uses the predictive density to
select the portfolio, is optimal with respect to M,,. If Py were known, the resulting optimal

wealth is

§7 = n W o)

where ,(1) — 0 in probability. We can lower bound the wealth of the Bayes strategy in
terms of the optimal wealth.

Proposition 3.D: The Bayes strategy, investing based on M,, , achieves wealth at least

.*ucw E
S, =8,e s, | 140

n i

~< w(e,)

= S¥0nen) ? Ll
n(2men) Vdet 1(8,)
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where the last expression holds asymptotically under the conditions of Theorem 4.1. Indeed,
forany oo e (0, 1) and any 1> 0,

D@4 | 1M~ Sc@) -1
S, Z5,e <

except on a set with probability asymptotically less than or equal to (¥a + e, as 7 — oo,
where ¢ (o) is the same as in the last proposition.

Proof: By Markov’s inequality, the wealth satisfies

m, (X"
S, = m:*|am..|v|u
PX* |8,)
except on a set of probability
S;  my, (X" SY m (X"
g, Qlal.lap 2e")<e"Eq Iu.l;,mlrv|
Sn pX _ 6,) Su pX _ 0,)
oy 5
<e ..M_Sa WM:
<e™

?

where the inequality E,, S,/S, < 1 follows from the Kuhn - Tucker conditions for the optimal-
ity of §,, for the distribution M, , see [5]. The result then follows as in the proof of the pro-
position on hypothesis testing from the fact that twice log m,, (X "Ypo, (X") + D(Pg, | | M),
asymptotically,

has a centered chi-square distribution with d degrees of freedom. [

4. Statement of Conditions and of the Main Result

An estimator 8 is consistent for 8, if and only if for any € > 0, Po (] b-0, | | >

tends to zero as n tends to infinity. We will be requiring consistency of the M.L.E. , and of
estimators of the Fisher information matrix at rate O(1/n). So, we first identify several
assumptions which imply that, and recur through many of the results. The first three parallel
Wald’s conditions for consistency, see [24], but are stronger, in that they are second moments
so as to get the desired rate.
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Assumption 1: Foreachx,as | |0 | | increases, p(x | 8)}— 0.

This assumption is convenient so that, if the parameter space does not have compact clo-
sure, then we still have that, for any fixed 6,,,

{o: _ _oalo _ _Vmu. 8, _ _ Qv

is bounded away from zero, which ensures that the only Pg's that are close to Py are those

for which 6 is close to 8, . Assumption 1 implies the infimum above is positive: By an
Egoroff’s theorem argument, one can get a strictly positive lower bound for the L' distance,

and so a strictly positive lower bound for the Kullback-Leibler number.

Assumption 2: For some large r we have that

Ellog sup pX |8)

2
<oo,
fo: | 1e-8, | [>r3p(X _?vH

Assumption 3: For each 0, and for any & > 0 small enough,
the function

x |6, 8= su (x |99
P 10.8)= R P

satisfies

X |6,)

N [ =]
b 16,5 <

E llog

Assumption 4: For each x, p(x | 0) is twice continuously differentiable with respect to

This is a necessary assumption for the Fisher information to exist.
Assumption 5: The prior density w on R 4 is continuous, and w(8,)>0 .

Assumption 6: The matrix I(6,) exists, and is positive definite.

We use this assumption so that all the eigenvalues will be positive and the inverse will

exist.
Assumption 7: For some & > 0, we have that

o 2
E ————log p(X; | 9) |[“<co.
T S 36,06, gpX; 16) |
In section 6 we give a proof of the main result of this paper which is an asymptotic

expansion for D(P§ | | M,) . Our result is the following theorem.
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Theorem 4.1: Suppose assumptions 1 through 7 are satisfied. Then

| | M, d e WHom det 1(8,) — log w(B,) + o (1),

D (P2
", 2% 2¢em 2

where 0 (1) > 0 as n — « . Moreover,

m, (™) . 1,
log ———— +D(P§, | | M,) > S@Z—d)
p(X* |6,) 2

in distribution, where Nm is a chi-square distribution with d degrees of freedom.
Proof: Deferred until section 6.

Remark: The proof we give in section 6 is one of two that we have.
The other, while shorter and more sophisticated, seems less intuitive.

The same result holds in probability with the quantities on the right, 7(6,) and w(6,),
replaced by their estimates 1 *(6) and w A@u.

5. Two Approximations

Note that the integrand of D (P3| | M,) is

og & ) _ o P& 18) o p X" )
T om, (") P& ) m &™)

The first proposition is an approximation to the first term; the second proposition is an

approximation to the expected value of the second. We prove both of the propositions using

the estimates 1™ and 8 since we can know them; if they are replaced by their true values the

results remain true. They also remain true with the maximum posterior likelihood estimator,

the M.P.L.E., used in place of the M.L.E.

Proposition 5.1: Let assumptions 1 through 6 be satisfied. Then, as n —> oo,

p " [ow®) _d qillP o ”
) wHo o log det I*(8) | — 0,

| log
in Py - probability, where

I"® = _ M

72 H.% 5 3600, 0P &1 10)
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Proof: See appendix A.

Remark 1: This result is substantially due to Walker [25].

In the Iower bound on Ucum_u | | 3,), it will be necessary to have a rate for the con-
vergence in proposition 5.1. We give it as a corollary.

Corollary 5.1: For any € > 0, if assumption 7 is satisfied also, then the probability of

a>>
px _es@lﬁoq,:lllso det I*(B) |>¢}.

Gi={x" | |1
s =1x" | |log ™) Slog o

is of order O(1/n).
Proof: See appendix A.

Next, for ¢ >0 we will approximate the expected value of

log 2&" 165) .
g ————— Xa..»
pX" [6)
where €., is the set defined by
Qe s(x"eR" | | [8c")~0, | [<e,sup | 1770®) =1, | | <eb-

in which € is less than some value of & which satisfies assumption 7, and £ is chosen so
small that the every element of the set

2
BI®,).e)={M eMyy | | IM-10,) ] [<e}R"
is invertible, where M, is the collection of all dxd matrices. Note that by lemma C.1,
PQS, 6,)=0(m). Now, we state the second proposition:

Proposition 5.2: Assume 1, 2, 3, 4 and 6 are satisfied. Then, if Vlog p(X |0,) has a
finite second moment, as . —> (if

pG" 8,) .d
m16,) logt— 2 X(dx") = (mis,
o PG 180) log™mm k) = (i

and

n FaY
tog 2X 18, 1.
px™ 16,) 2

in distribution.
Proof: See appendix B.

Remark 1: The choice of domain of integration is motivated by the desire to force the
expectation of 1" (8" )™ to converge to 1(6,)”}, where 6" is any point in the parameter
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space on the line joining 6, to 8. For, on the domain of integration not only are the entries
of the approximation closer than € to their true values, they are close enough to force bound-
edness of the inverse of the matrix they form.

Remark 3: Wilks [26], Wald [23], and Chemoff [8]., established that
2 log p(X™ | @v@ (X" | 8,) converges in distribution to a chi-squared random variable with d
degrees of freedom, (under different hypotheses). However, we are not aware of any proof
that the limit of the expectations is the expectation of the limiting chi squared random vari-
able.

6. Proof of the Main Theorem

We will sandwich the desired quantity, D(P§ | | M,), between upper and lower

bounds which will both converge to the same expression. By definition

px" 18,)
D®y, | M) =] p(" 8,)log™————=(dx").
y, ()
We decompose the integral into a sum of three terms. The domain of integration for two of
the integrals is a suitably restricted subset of the sample space;
it was chosen so that local theory will apply. The third integral is over the complement of

the subset and we will prove that it is negligible. Our decomposition is:

px" 16,)
DP: | |M,)= 7 | 8,)og L Mdx" 2
g, | M)=[, pG 6o N @)
" L@ 18, .,
o P67 180log™ TS Md") ®
N TS i LOPY @
2 my (x")

We will upper and lower bound the three integrals above. First note that by proposition

5.2, for any preassigned 1 > 0 the value of (2) is in the interval TW -1, IW +m) for n large

enough. Next, we obtain good lower bounds on (3) and (4).

For (3) we will use proposition 5.1 and corollary 5.1. Both results continue to hold if
the true Fisher information matrix is used in place of its estimate.
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So, we redefine the collection of ‘good’ x"’s to be:

n
QH n HQE HQ%@ ImHQhE!WI o
o=l | llog ZE 10 W(0,) - Jlog - ~ Flog det 10, | <5}

and write (3) as

L

e

. a8, ., n P& 8.,
o P& 10 NogE SN £, p | 8)log® S A"

d

>[ Slogt + wsm det I(8,) - log w(8,) - €] Py (@, ,0G,)

2m

" le, m, (x™
Py AbmaDQMi. pG" 16,) log o) Addx"™)
o\, QanGi Po (Q.,"GE)  p&" 16,)

which by Jensen’s inequality is

>—g + Hm.smwla + wwom detl (8,) — log w(8,)1Pg (X, NG,)

. m, (") .
— Po,(Qe,"Gillog | [ i P DG Max™) | . )
ert e g \ssg n

Writing B, = £, NG, , the factor in large brackets,
—Pq,(B,)log M(B,) + Pg (B,)log Py (B,),

is bounded below by o(1), since —log M(B,) >0 and Py (B,) — 0 . Thus we have the new
lower bound:

€ + ﬁmsm% + w_om det 1(8,) — log w (8,)1Pg, (R ,NG,) -1, 6)

valid for all large n.

For (4), we will use a Jensen’s inequality argument to show that it is greater than or
equal to -, for all large n. Indeed, (4) equals

p&" 19,) my,, (x*)
—P (S, 16,)] . log Aldx™)
= ﬁio@ 16,0 pG&™ 16,)
m, (x")
>-P(QF, | ®log| —————NMdx"
S POs 16y D
M,(Qg,)

=—P(QF, |6,)log ~——0—=2"
«Q:, | VmEbm,%_aL
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2P (Q¢, |6,)log P(Qg, |6,)

>n @

for n large enough, since P(Q, | 6,) — 0.
We now have good lower bounds. It remains to upper bound (3) and (4).

To get a good upper bound on (3), note that (3) is upper bounded by

og 2& | 6)
~Jo, log [g: e P& 10w @)dop ™ |8, Mdx™),

in which we have used

By ={8[(0-08Y1(67)0-8)<dw(® 2w(®)1 -
where 8™ is as in Appendix B. Because the domains of integration have been cut down
appropriately, we can use a Taylor expansion in the inner Jogarithm. The last integral equals

lwa — B 10" %) — )

~lq,, log 5 w(0)dOp (x" | 8,)Mdx™). &)

Laplace integration gives a lower bound for the inner integral:

IR P SCA CE)

Ip: e w (0)d 0

> (1 — 227 2r)det[nl * (0™ V2w (0, X1 —~ ). (9)
Using (9) in (8) gives the upper bound
~[q,, log my*detinl " (0" ) p(x" | 8,)Mdx™)
— P(Q, |6,) [log [1 —2%%7**] +log w(8,) + log (1 - )],
which, by lemmata 1 and 2, gives, upon rearrangement, that (3) is upper bounded by

a log (=
2n

2 ) + w log det 1(8,) + (3, £) — log w(8,), (10)

in which m tends to zero as 6 and € tend to zero, provided that the limit as n increases has
already been taken.

The last quantity to upper bound is (4). As with the upper bound on (3) , we may invert
the arguement of the log, restrict the domain of integration in the definition of m, and rewite
the inner integrand so that we have an upper bound on (5) which is of the form:

p&" [6,)

—log -
PE"18) vy (9)d OA(dX™).

_ n
b%ﬁ@ _ oav_ombm_ || o-6, | _m&m
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Since 6 is restricted to a neighbourhood about 6, , we can use a Taylor expansion of
log p(x" | 6):

log p(x" | 6) ~log p(x" |6,)="n (8-6,)'S,(®).
where S, (0) = AialvﬂHom p X" | 6). Now, the last integral is

_ n o <V 06,5, 8) n
fpep @™ 10oog [ o < W (9)d OA(dx" ) (11)
We can now upper bound (11) by bounding the exponent with
6-6,)S,(®) < 8 su 5,0 | |
6-0,y5,® <8 sw 1150 ]

Doing so gives
~P(Q¢, |6,)log W{6: | |6-6, | | <8}

o . n n
+ :&me_.g_ LS9 | = | 15,0 || pG" | 8,)Mdx™), (12)

as an upper bound for (4). By consistency the first term is no problem.
For the second term use the Cauchy-Schwartz inequality, lemma C.1, and the fact that, by

assmption 7,

m_%mﬁ_& | ViogpX; 18) | P <o

Putting the bounds (6), (7), (10) and (12) together we have

d 1
) —£+ [— _oqm.w MHOQ det/ (8, )1P g (€2 , NG, VI%\_+HOQ€8 )
<D(P3, | | M,) (13)
d d 1
S——+ — — log det I 4 g————
w+NHommﬁ+m og det I(0,) +4n + log s\mcv

The first conclusion of the theorem now follows since Pg ((Qg, NG, )°) = 0 (V).
Finaily, by writing the decomposition

m(X")

log —————
p&X" 16,)

+DPg, | 1M,)

—log —ED) | 1oe pX" |8 +D@PE | | M),

pX" |6) p&X" 16,) ’
we have that proposition 5.2 implies that the middle term goes to (12)x7 in law; and that, by
proposition 5.1, and the first part of the theorem the sum of the first term and last term  goes
to -(d/ 2), in probability. This concludes the proof of the theorem. O
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Appendix A

In this appendix we give the proofs of proposition 5.1 and corellary 5.1

Proof of Proposition 5.1 and Corollary 5.1:  We indicate how to modify the technique used by Walker. Since we
arc using estimates wherever possible we must be careful about the errors introduced by the approximations so as to be able

to prove the rate stated in the corollary. Consider small sets about 8, , of the form
B*s={ 6eR? | (0-8)7 I* (6)(0-B) <5},
and
Bs={ 6eR? | (8-0,)71(8,)(6-8,) <8}.

Now:

m(X")=[p w@p (" | €)d6+] w(@p (Xt | 6)d0

B4
=lhtds (B
We want to approximate #1, by J; . So, we must show that the contribution from J5 is so small that it can be neglected.

To do this. we will first show that J5 is upper bounded by p (X" | &) weighted by an exponentially small factor. Then. we
will get bounds for J; in terms of p (X" | 9 weighted by a polynomially small factor.

By lemma C.2¢). and C.1 (ii). for any positive §; < &

there exists an € >0 such that

0gJ, m;w w{®p (X" | 8)d6 @
<e™p(X" |8,) < e pX" | ),

with P g, Probability at least 1 —c/n, for some ¢, and for all large n.
By using lemma C.2, parts (i) and (ii). we choose §; < & < & and simplify the domain of integration in J; :
J; w@pxr 18)dB < s, w@pee |6)de,
5 !
with probability at least 1 — ¢/ for n large enough. We can use a second order Taylor expansion of log p (X" | 6) at 8.
For some 9™ (X") €[0,, 8] we have

. . LA umal@vis..xmle
pX" 18)=pX" | B -

By lemmata C.1 and C.2, given T >0, we have that for all large n the following three properties hold with probability at least
1—cm: ! *@ is positive definite. § & B+ and

(1 =78~ 8¢r=®)yo -6 <®—-8yr+=©")0 -8 < (1 + 70 — &) 1+ @)6 - 6).
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Whenever those three conditions are satisfied, we may use Laplace’s method to obtain bounds on J 1 of the following form:

for some & > 0.

[N

" O @)1 - e~ v det 7*(B) ﬁ - e

n C+av

<7 3)

d

| h
<p(x" _eimx:m\g; cévu%w I*@) 2.

This holds with probability at least 1 — ¢/ . Note that, by the continuity of w, we can Jet €7 tend to zero 2s & tends to
zero. Now we assemble (2) and (3) so that we have bounds on m, (x");

d
pG" _eieclmx%xn den 14(0) 717"
<y (x") | @

d s

<p " | B)w @) + & (—=2—)2det I*(B) 2(1 + D).

n GL&
We next identify exactly the guantity that we hope is smail. Let

4 L
Pn_oms@sém ?axwlfw%ﬁ E@in%_mg.

Equation (4), which gives bounds on m,, (x*), can be used to show that the limit of A, as 7—co exists and is zero by tak-

ing logs and rearranging the result so as to get upper and lower bounds on A, which go to zero. O

Appendix B

In this appendix we prove the second proposition stated in section 5.

Proof of Proposition 5.2: We show that

[, tog 28 L8 n 1, pagaemy 5 -2

w - pxt 1) 2

an n — . Since the integral is over a small set we can again use a Taylor expansion and bound the error. First we expand

log p(x* | ©) to second order about § . Let

then the quantity to be asymptotically approximated by the proposition is

- Z RO Zp e " )



where 8™ = 6™ {(x") lies on the straight line joining 8,
and 8. By a first order application of Taylor's theorem we may write
Viog p(x" | 8) ~Vlog p(x" | 8,) =nl*,(8)(6-6,)
=nl " (8)(8-9,)

A ~

where 8 = 8(x") also lies on the line joining 8, to 6. Since  is the M.L.E the first term in the expansion is 0. Using the

resulting equation in the definition of Z, gives

2, =V (0°~0) =~ I* @) 'Viog p (=" | 8,)
n
=I* ()7, (6)

The transformation / *m@u is the way we can convert our statements about Z,, whose structire we do not know into state-
—_—
ments about S, whose structure we do know: S,= G\f I)¥Y, is a weighted sum of the iid. randem vectors
i=1
Y= Vlog p(X; |9,) and satisifes the moment condition

E 8,87 =1(8,),

because, for any i between 1 andn. E ¥; ¥ =1(8,) , and E ¥; =0. By equation (6). and the fact that inversion commutes

with transposition. we have that
E Z,1%(8")Z, Yo, =E STI%, By 1*(8"*) I*®)™ S, %q_
=E S{ I7'8,) S, %o, + E ST (A —I7(00)) Sy %o, ™
where we define
A, =¥ @) 1+ (9™ I+ (B)7
Now. since E S;17(8,)S, =d. it remains to show that E Si1(8,)'S, 30, and E ST (A, ~I7(8,)) Sy Xa, tend to

zero as 71 (— eo. Note that S57(6,)7'S, is a positive quantity, and is uniformly integrable, since it converges in distribution

and has expectation equal to the expectation of its limit, s in Chung [ 10] pp. 97. Then E S:I(8,)S, Xqe —> 0, since
14
P(Qf |6,)—0.

It remains to show that the last term of (7) goes to zero as n increases.

Given the domain of integration this is easy. For. we have that
Ap = IN8,)
inP g, Probability, and that the sequence A, Xa,, is bounded in norm. Also, we have that
SHA—TT8,)) S, Xa, — 0

in Py probability, by weak convergence to a constant and Slutsky’s theorem. Since SiI ~1(8,)S, is uniformly integrable
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and A, X<, is bounded in norm, it follows that there exists a constant C so that
| SHA—17'80)) Su | Xpew,, < C SHIT0,)S,,
0
SHA—T78.)) S, %o,

is uniformly integrable.

The second clause of the proposition foliows from considering the integrand in (5): it converges in law to a chi-square

with d degrees of freedom since the probability of the complement of the domain goes to zero. O

Appendix C

Here we give the statements and proofs of the lemmata which we use in the proofs of the propositions and the
theorem. The first two are bounds on the rate of decrease of probabilities which oecured in bounding (6) from above. It is

assumed that p (x | ©) is continuous in © for each fixed x.

Lemma C.I: (i) Assumptions 2 and 3 imply that, for any given 8 > 0,

Po(|6-6, |>8=00n)

(i) Also, assumptions 2 and 3 imply that there exists € > O such that

P, (p(X" |8,)<e™ sup p(X" | ) =0 (h).
8e B§

(iti) Assumptions 4, and 7 imply that, for € small enough,

Py Amcw PITM® -10) | |>8)=00m).

®0e

Remark :  Conclusions (i) and (ii} are patterned after results of Wald [24], and Wolfowitz [27], respectively, so as

to give rates of convergence.

Proof: First note that the event
.m _ @ - ®e _ > m w
is contained in the event

{p(X" |8,)< sup p(X" {0) %
mmmm

So, to prove (i), it suffices to prove (ii). We use Chebyshev’s inequality in a proof patterned after Wald. From assumptions



- 25

(1) and (2) select r sufficiently large that for some £, 11" > O we have

Y-E  ap log 2X 19

p
lle-8, | [>r ~ pX |8,) n"

Cover the compact set
{66 [l=sr, |16-6 ||2(*%}

with finitely many small balls B; centered at points 6;, with radius &;, where i ranges from 1 to k, so that for some
€7, 1" > 0 we have

pX |9)

>n".
X 18) N

- mmm.wwhHom

From assumption (3), and the dominated convergence theorem, that can be done since the Kullback - Liebler number

Elog p(X | 9,Yp(X | 9)is positive. If 0 < £ < min(g’, €”) and 7] = min(m’, N"*) then,

Pol, 591, g% S oy >
<Pg ( o mmcv_vmoq mﬁ |;£+M§em o mwﬁ mommmn;;|__ow >-ng)
<Pe(rE o5, 8 MMM __Mw B, ), Jor s

+ Mwo G M o S0P, log MM.I__AW TE e 5L 8 M%A# >

Since 1 > 0, Chebyshev’s inequality may be applied to each term so as to upper bound the right hand side by O(1/n}.

"The proof of part (iii) is similar; Use the matrix norm which sums the absolute values of the entries and consider each

. wcww | i2(6) —i;4(8,) | separately. Let &€ >0 be less than any & which satisfies assumption 7. We modify the
mo

argument from (ii). Note that

Po( o, % | < | 7 4(8) — i;1(80) [ >m)

L , n . . mn
<Po,( |y S | |T6®) =28 1> 50+ Po (] 540 = 5:00) 1> 5)

The second term is O(1/n), by Chebyshev, For the first, choose € so small that

2
Elo % < %ms

9*

36,36, 08 P& 19— 36,00,

Saaalog plx | 6e) _Al

then set up another application of Chebyshev’s inequality, O

In most cases where we have wanted to we prove the convergence of a sequence of matrices we have used the matrix
norm _ _ - | | on d x d matrices which sums the absolute values of the entries of the matrix. We denote the Euclidean

norm on the parameter space with the same symbol, since the argument will indicate which meaning is intended, Clearly. by



the equivalence of norms on Euclidean spaces. lemma 1 remains true under any choice of Euclidean norm on the parameter
space or on the space of dXd matrices. In particular, to prove the next lemma it is more convenient to use either the norm
on matrices which takes the supremum of the entries, or the norm which takes the largest of the absolute values of the ¢igen-

values.
In the next lemma we state three routine results which can be used to prove the two propositions used in the theorem.
Parts (i) and (i) amount to an equivalence of neighbourhood bases about the true value of the parameter.
Specifically, let
By ={6eR? | (8-0,) 1(8,)(6-8,) <p’}
B*,={0eR? | (6-8)" I* (0)(0-B) <p}.
We have assumed that I (8, ) is positive definite. This means B and B*,, are neighbourhoods of 6" and 9, and all eigen-
values of [(8,) are positive.

The third part of the lemma sandwiches an approximation of [(0,) between two other approximations which are
evaluated at the M.P.L.E. and weighted by factors close to 1. The symbol < used between matrices means that the bilinear

form induced by one matrix is greater than the biliniear form induced by the other matrix.
Lemma C.2: Assumptions 1,2,3,4,6, and 7 imply
(i): Given p > 0 there exists p" > 0 such that
B¥ 2 By
with probability at least 1 — ¢/ for all large o

(ii) : Given p” > 0 there exists a p > 0 such that

with probability at least 1 — ¢/n for all large n.
(iif) : Given T €(0,1) we have that
(1+0r* @) 21%(8") 2(1—nr* B),
with probability greater than 1 — ¢/k for all large n, where " * is on the line joining 6, to .
Proof:  Parts (i) and (i) follow from routine calculations with inner products on RY | using lemma C.1 parts (i) and
().
Part (iii) follows from considering disjoint open sets about I(8,), (1 + T} (6,), and (1 - 1)/ (6, ) and choosing n so

large that the estimates of them lie in the open sets. O
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