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Abstract

We begin by recalling the tripartite division of statistical problems into three classes, M -
closed, M -complete, and M -open and then reviewing the key ideas of introductory Shannon
theory. Focusing on the related but distinct goals of model selection and prediction, we argue
that different techniques for these two goals are appropriate for the three different problem
classes. For M -closed problems we give relative entropy justification that the Bayes information
criterion (BIC) is appropriate for model selection and that the Bayes model average is informa-
tion optimal for prediction. For M -complete problems, we discuss the principle of maximum
entropy and a way to use the rate distortion function to bypass the inaccessibility of the true
distribution. For prediction in the M -complete class, there is little work done on information
based model averaging so we discuss the AIC and its properties and variants.

For the M -open class, we argue that essentially only predictive criteria are suitable. Thus,
as an analog to model selection, we present the key ideas of prediction along a string under a
codelength criterion and propose a general form of this criterion. Since little work appears to
have been done on information methods for general prediction in the M -open class of problems,
we mention the field of information theoretic learning in certain general function spaces.

Keywords: M-closed, M-complete, M-open, Bayesian, information theory, codelength, entropy,
relative entropy, mutual information, rate distortion, model selection, prediction

1 Introduction

Arnold Zellner is noted for many contributions. Arguably, he is best noted for his work combining
information theory and Bayesian statistics. More specifically, Zellner’s perspective rested on what
is now called Shannon theory. The core idea of Shannon theory is to regard messages as coming
from a source distribution. That is, we assume messages are randomly generated and seek ways to
express them compactly, transmit them efficiently, or compress them without too much loss. Many
of the criteria that emanate from Shannon theory lead to techniques that provide good perfomance
even in settings when the full information-theoretic model does not obviously hold.

Here we focus on the likelihood and the main point of this paper is to argue that the form
of information-theoretic thinking appropriate to a statistical problem depends on the class of the
problem and the perspective taken within that class. Specifically, we follow the tripartite division
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of statistical problems into three classes (M -closed, M -complete, and M -open), as advocated by
Bernardo and Smith (1994), based on the nature and location of the true model relative to the
chosen model class. Within each class we propose two perspectives: Identification and prediction.
Thus, there are six basic categories and we argue that different techniques are appropriate to each
of them. Indeed, we identify techniques appropriate to each of these classes but regard the paucity
of techniques for M -open problems as a gap to be filled.

The notion of problem classes has also been implicitly recognized in economics for a long time,
see Sawa (1978) who notes: ‘It may be very likely that the true distribution is in fact too compli-
cated to be represented by a simple mathematical function such as is given in ordinary textbooks.’
Essentially, this means that identifying a true model, possible only in M -closed problems, is fre-
quently impossible. How well we do otherwise will depend on a variety of factors leading us to
distinguish between M -complete and M -open problems.

The M -closed problem class is optimistic: There is a true model which is not only uncoverable
but can be regarded as actually on the discrete list of models we are considering. Clearly this is
rarely going to be strictly true. So, in practice, it is enough to assume the list of models under
consideration is rich enough that at least one of them is so close to the true model that the error
due to model mis-specification is negligibly small compared with other sources of error.

By contrast, one might say the M -complete problem class is realistic. This problem class
assumes there is a true model but that it is inaccessible. For instance, the true model may be
so complicated that model identification given the data we actually have at hand is impossible.
That is, we can know limited aspects of how a system responds but a fully detailed model for the
response is impossible to identify (at least in the present). As an example, we might be able to
infer the effect on GDP as a consequence of monetary policy if we knew enough about many of
the other the variables defining the economic system. So, we can imagine that if we had complete
macro-economic information – and enough of it – we would be able to construct a model for GDP.
However, the chances of actually identifying such a model accurately given the usual circumstances
of a researcher is remote. This means that we can use the concept of a true model but the role
of the prior on models cannot reflect our belief that a given model is true. Thus, we compare
different candidate wrong models in view of the conceptual existence of a true model. We deal with
M -complete problems by assessing models we can formulate in terms of their tractability, ability
to summarize data, provide reasonable fit, and make good predictions but do not get lured into
believing our models are actually correct.

The M -open class is pessimistic. This problem class assumes that there is no true model. The
best we can do is invoke models as actions to make predictions, not necessarily believing anything
they may appear to say about the underlying mechanism. In this case we compare models (or
predictors more generally) to each other and to the data predictively without reference to a true
model. Thus, priors are merely weights to be adjusted, not tied to pre-experimental beliefs.

Examples from these three problem classes are easy to construct. Probably the price of an
internationally traded commodity is an M -closed problem. For instance, one can write down a
complete list of the factors affecting the price of oil and most of these can be measured, at least
by proxy (e.g., political tensions mght be summarized by movements of military equipment). M -
complete problems are, arguably, more typical. For instance, unemployment rates or interest rates
summarize a great many effects many of which are not known but could in principle be known.
That is, we can imagine there is a model to explain unemployment or interest even if we are unable
to formulate one that actually works well in general. M -open problems commonly occur, but are
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less familiar because they may involve the idea that people are not rational actors in the usual
sense. For instance, modeling price stability is probably M -open: Possibly, the people affecting the
price of a good have not yet made up their mind how they will react to a given price level under
future circumstances. One might also argue that while the effect of monetary policy on GDP is
M -complete, modeling the whole GDP as a function of all its components is M -open. En masse,
people may not have decided if they intend to pay off debt, go on vacation, or invest in capital
equipment and will not make such decisions on the basis of anything that can be modeled.

Within each problem class there are two perspectives. These are model identification and
outcome prediction depending on whether the goal is to obtain a single mathematical representation
to help understand the nature of the problem or merely to come up with a good predictor for
future outcomes. In the M -closed case, model identification means model selection while prediction
essentially means combining several models into a good predictor – which in the limit of large sample
size converges to the true model. (It is well known that good predictors are usually the result of
combining several mathematical representations; the classic reference for this is Clemen (1989),
though there are more recent contributions such as Breiman (1994) for bagging and Raftery and
Zheng (2003) for Bayes model averaging.) In the M -complete case, model identification as a whole
does not make sense although some aspects of the true model might be inferred from a model we
identify. From a predictive perspective, M -complete problems generally require model averaging
bearing in mind that the models in the average do not get weighted according to their credibility,
only according to their predictive success. In the M -open case where the concept of a true model
is inapplicable the identification perspective means we seek a single unitary predictor while the
predictive perspective means we are comfortable with a composite predictor, one comprised of
subunits each making predictions that get combined to a single prediction.

It is intuitive that the M -closed class is less complex than the M -complete class which in turn
is less complex than the M -open class. However, it is not clear how to represent these forms
of complexity in codelength terms. Nevertheless, we expect that techniques appropriate for one
complexity class of problems will work better for that class than for problems in other complexity
classes. That is, we expect techniques that work well for M -closed problems not to work so well for
M -complete or M -open problems. Likewise, we expect techniques that work well for M -complete
problems should not work so well for M -closed or M -open problems and techniques for M -open
problems should not work so well for M -closed or M -complete problems. We expect this to hold
for both the model identification and prediction perspectives.

We comment that an important recent development in the information basis of prediction is
Ebrahimi et al. (2010). These authors work with M -closed and M -complete problems from a
model selection standpoint; see Theorems 1-4 for evaluations of mutual information between future
outcomes and available random variables. Example 3 and Figs. 4 and 7 are particularly incisive for
quantifying the information effect of Type II censoring and dependence. This contribution should
be recalled in Sec. 3.1 and 4.1.

The structure of the rest of this paper is as follows. In Sec. 2, we review the basics of Shannon
theory and their relationship with frequently occuring statistical ideas. Then, in Sec. 3 we turn
to the M -closed problem class. From a model selection perspective, we provide an information-
theoretic interpretation of the Bayes information criterion (BIC). From the model averaging per-
spective, we provide an information theoretic optimality for the Bayes model average 1(BMA). In
Sec. 4 we focus on the M -complete problem class and show two ways one can propose parametric

1It is more conventional to call this the Bayesian model average, but dropping the ‘sian’ is shorter.
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families to address M -complete problems. We also discuss the Akaike information criterion (AIC),
and its variants, as good ways to predict in M -complete problems. In Sec. 5 on the M -open prob-
lem class, we review the extensive literature on ‘prediction along a string’ or which rests primarily
on codelength. Then, from the identification perspective, we propose a reformulation of the usual
problem to reflect the M -open class explicitly. From the predictive perspective, we briefly refer to
current work using information theoretic concepts in reproducing kernel Hilbert spaces. In a final
concluding section we review the implications of the overall view we have elaborated. Technical
details for the results in Sec. 3 are relegated to two Appendices.

2 Shannon Theory

The Shannon theory view is that knowledge is the number of bits (zeros and ones) required to
describe an event for which there is a probability. Loosely, a probability is a codebook and the
probability of an event is a codeword. Obviously, if there are different problem classes, the properties
of their probabilistic descriptions will be different and we might reasonably expect this to affect the
way we represent them in terms of codebooks. Consequently, we will see that the three problem
classes have different relationships with Shannon theory.

There are three fundamental quantities that occur in Shannon theory: The entropy H(X) of
a random variable X, the relative entropy D(P‖Q) between two probabilities P and Q and the
Shannon mutual information (SMI) I(X;Y ) between two random variables X and Y . We discuss
their relationship to statistics in Subsec. 2.1 and then turn to formalities in Subsec. 2.2.

2.1 Statistical Concepts and Shannon Theory

Roughly, H(X) is the average minimal codelength required to record the information in a random
variable X. Maximum entropy as a principle therefore asks for the random variable with the
longest minimal codelengths. When the minimal codelengths are long, the distribution tends to
be spread out, and the entropy is high. When these codelengths are short, the distribution tends
to be concentrated, and the entropy is low. One can therefore argue that the entropy is a better
assessment of variability than the variance in some settings.

The entropy can also be maximized in some cases, usually subject to some constraints on X.
Sometimes this gives convenient parametric families (see (3) below). The meaning is that we have
found distributions that are as spread out i.e., uninformative, as possible given the constraints. If
the ‘maxent’ distribution fits well then the remaining variability can be regarded as intrinsic to the
data generator. If the maxent distribution does not fit well then we know that the constraints do
not accurately describe the data generator. In either case, maxent distributions are often a good
way to express assumptions about the data generator in terms of the likelihood.

The relative entropy D(P‖Q) can be regarded as a measure of statistical distance between P
and Q. It is not symmetric and does not satisfy the triangle inequality, however D does define a
convex neighborhood base and therefore defines a mode of convergence. This mode is stronger than
Hellinger (which is stronger than L1), and weaker than χ2, see Tsybakov (2009) p. 90. The relative
entropy also satisfies a Pythagorean-like identity. So, D can be used as a loss function and for
robustness purposes. Recently, Sancetta (2012) provided a thorough exposition of how predictive
error under a variety of loss functions can be reduced to predictive error using relative entropy loss.
Also, Soofi et al. (1995) proposes the information distinguishability ID(P,Q) = 1 − e−D(P ||Q) as
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the ‘right’ calibration for for deciding when the difference between two models is too small to worry
about.

A special form of the relative entropy is the SMI, I(X;Y ) = D(PX,Y ‖PX × PY ). The SMI
is the distance between a joint distribution and its product of marginals and so is a measure of
dependence. When X is taken as an n-fold sample and Y is taken as a parameter θ, one can
optimize to find the prior w(θ) that makes the posterior w(θ|xn) as far from w(θ) as possible. This
is the foundational concept behind reference priors – the prior that is least informative is the one
that will be changed most on average upon receipt of the data. The literature on reference priors
is vast and they have proved an extra-ordinarily useful principled way to choose priors.

It is well-known that information concepts characterize large deviation principles, Dembo and
Zeitouni (1993) (see Chap. 6), error exponents in hypothesis tests see Cover and Thomas (1991)
(Chap. 8), and recur frequently in modern model selection e.g., Shtarkov (1988), Barron and Cover
(1991), Rissanen (1996) as well as in the classic Akaike information criterion (AIC) and Bayesian
information criterion (BIC) which will be discussed below.

Taken together, it is seen that Shannon theory helps quantify many common statistical concepts.
Consequently, it is worth providing a more formal review of the basics of Shannon theory, beginning
with a simple example.

2.2 Source Coding Example

By regarding messages as probabilistically generated, Shannon theory ends up studying their code-
lengths. This is seen in the seminal work of Shannon (1948a), Shannon (1948b), as well as in
Kullback and Leibler (1951) and Kullback (1959) (the earliest textbook). The classic texts include
Ash (1965), Cover and Thomas (1991) but there are many others.

So, say we have a d letters in an alphabet generated from a source distribution and we want to
represent them using only zeros and ones. Then, it is easy to see that we can use strings of zeros
and ones with maximal length log2 d. Consider the 26 lower case letters of the English alphabet
with six extra symbols, say ; , : , . , (, ), and , (comma) giving d = 32. If we wanted to express
these 32 ‘letters’ in strings of 0’s and 1’s we can use strings of length log2 32 = 4. That is, the
codelength of each symbol is four. If we receive a string of 0’s and 1’s of length 4n we can decode
by recognizing each 4-tuple of digits as a letter in the augmented alphabet.

Now, one might suspect that assigning codewords of the same length to e – the most commonly
occurring letter – and to : – which occurs rarely – is suboptimal. So, the length four coding for
the augmented alphabet is likely suboptimal. Since brevity is accomplished by assigning shorter
codelengths to more commonly occuring letters we could try assigning e the single digit 0. For ease
of decoding we would want to start all other codewords for the other letters with 1. That way, once
we found a 0 we would know we had an e and could move on to recognize the next letter.

To see how this form of expected codelength reasoning works suppose our alphabet consists of
four ‘letters’ {Y,N,M,D} for Yes, No, Maybe, and Don’t Know and that the probabilities of being
told one of the four letters in the alphabet are 1/2, 1/4, 1/8, 1/8. Then, we might seek codewords
in {0, 1}∪{0, 1}×{0, 1}∪{0, 1}×{0, 1}×{0, 1} to express the letters compactly. So, write w(Y ) to
mean the codeword – a finite string of zeroes and ones – assigned to the letter Y and write `(w(Y ))
to mean its length. Define w(N), w(M) and w(D) and `(w(N), `(w(M)), and `(w(D)) similarly.
One natural approach is to seek the coding that minimizes the expected codelength subject to the
constraint that no codeword is the first part of any other codeword. These are called prefix codes
and this means that once a codeword is recognized it can be decoded correctly. It can be checked
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that one expected codelength minimizing prefix code assigns 0 to Y , 10 to N , 110 to M and 111
to D. In this case, if X is the ‘source’ i.e., represents the random selection of a letter from the
alphabet, E`(w(X)) = 1 ∗ 1/2 + 2 ∗ 1/4 + 3 ∗ 1/8 + 3 ∗ 1/8) = 7/4. Note the codewords are not
unique (110 and 111 can be interchanged) but the Kraft inequality ensures the codelengths are.

Unique codelengths are what allow us to go back and forth between the codeword and the
probability the codeword occurs. Loosely, if x is a codeword, then log 1/P (X = x) is its codelength,
a measure of the information it contains. Conversely any two distinct codewords x and x′ with the
same codelengths represent the same amount of information (though the actual information in x
and x′ is different). Thus, the main results of Shannon theory focus on how codelengths capture
the concept of information.

2.3 Review of Shannon Theory

For discrete X, Shannon’s First Theorem identifies the entropy of the source distribution as the
minimal asymptotically achievable expected per-letter codelength for prefix codes. The entropy is

H(X) =

{∑J
j=1 pj log(1/pj) X discrete,∫
p(x) log(1/p(x))dx X continuous.

(1)

In the discrete case, J is the number of codewords (pj = P (X = j)) and in the continuous case dx
really means p is a density with respect to a dominating measure µ suppressed in the notation.

The appearance of the logarithm, here assumed to have base 2, is essential to the codelength
interpretation when X is discrete. Roughly, the logarithm of a probability of an event corresponds
to the number of zeros and ones required to express the event as if it were a letter to be sent. This
was seen in the case of coding the augmented alphabet where we noted strings of zeros and ones
of length four were enough to code 32 letters. In fact, a Shannon code is any code for a discrete X
with lengths given by `(X) = dlog 1/p(X)e. It can be proved that the Shannon codes have expected
codelength within one bit of the optimal codelengths.

To see how (1) can be applied for discrete X, oberve that the entropy of X is 1/2 log 2 +
1/4 log 4 + 1/8 log 8 + 1/8 log 8 = 1/2 + 1/2 + 3/8 + 3/8 = 7/4 which is the same as the expected
codelength already found above. Indeed, equality holds whenever the probabilities of letters are of
the form 2−k; more generally the entropy is a lower bound. Shannon’s First Theorem gives that
the entropy lower bound is tight and can be achieved by an appropriate (Huffman) coding scheme.

The situation is quite different when X is continuous because the entropies of discretizations
of a continuous random variable X do not converge to the entropy of X as the discretization gets
finer. In fact, if Xδ is a discretized version of X for intervals of length δ, then

H(Xδ) + log δ → H(X). (2)

For δ = 1/n, H(X1/n) ≈ H(X)− log n, i.e., the discrepancy grows as the discretization gets finer.
This happens because it takes infinitely many bits to describe an arbitrary real number exactly.

Despite (2), the continuous entropy is an asessment of variability that can be invoked in Zellner’s
Bayesian method of moments and other maximum entropy procedures. Indeed, as noted in Subsec.
2.1 the maximum entropy (ME) principle can be used to give families of distributions effectively
formalizing a sort of method of moments approach. Suppose we have a collection of constraints of
the form EpTk(X) = λk where the subscript p indicates the unknown model and Tk is a statistic
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such as a moment, k = 0, . . . ,K. Then, writing λK0 = (λ0, . . . , λK) it is not hard to prove, see
Cover and Thomas (1991), that

p∗(x|λK0 ) = arg max
{p:EpTk(X)=λk,k=0,...,K}

H(X) = C(λK0 )eη0+
∑K
k=1 ηkTk(x), (3)

where ηk = ηk(λk) and C is a normalizing constant. Often (3) is credited to Kullback (1954). The
expression (3) generalizes to the case that H(X) is replaced by the relative entropy in which case
it is often called the minimum discrimination information (MDI).

On the other hand, we may get around (2) by using the relative entropy. Consider two random
variables X and Y with distributions P and Q with respect to the same dominating measure (which
we ignore). The relative entropy between them is

D(P ||Q) =

∫
p(x) log

p(x)

q(x)
dx, (4)

provided P is absolutely continuous with respect to Q. The relative entropy is a ‘redundancy’
because it represents the extra bits we would have to send (on average) if we used a suboptimal prefix
code. If we have the (nearly optimal) Shannon codelengths `(X) = dlog 1/P (X)e for a discretized
form of X and we have another set of codelengths `′(X) then we can write P (X = x) ≈ e−`(x) and
Q(X) ≈ e−`′(x). This gives the expected excess bits as

EP (`′(X)− `(X)) ≈ D(P ||Q) ≥ 0. (5)

So asymptotically minimizing the redundancy (specifically in ‘block coding’, see Cover and Thomas
(1991)) effectively means choosing Q to be the Shannon codelengths from P .

Another form of the redundancy is

BR(w,Q) =

∫
w(θ)D(Pθ||Q)dθ, (6)

for a parametric family Pθ equipped with a prior w on θ. Expression (6) can be recognized as
the Bayes risk of the action Q where D is the loss function. So, minimizing over Q gives the
Bayes action for the decision theory problem of estimating Pθ. Parallel to (5) which identified the
Shannon code with based on P as having minimal redundancy, Aitchison’s Theorem, Aitchison
(1975), identifies the Shannon code based the mixture M(·) of probabilities Pθ(·) with respect to
w(·) as having minimal BR(w,Q) over Q in (6).

Formally, the Shannon mutual information (SMI) is

I(X;Y ) =

∫
p(x, y) log

p(x, y)

p(x)q(y)
dx. (7)

Again, PX,Y must exist with respect to the same dominating measure as PX ×QY and PX,Y must
be absolutely continuous with respect to PX ×QY . Of particular importance is that without this
absolute continuity one cannot use a Jensen’s inequality argument on log to show non-negativity of
the SMI. Indeed, Ebrahimi et al. (2008) p. 1229 notes the non-applicability of the SMI to singular
distributions and that in the case of the Marshall-Olkin distribution one can get negative SMI’s.
On the other hand, both (4) and (7) behave well with discretization in the sense that, for instance,
I(Xδ, Y δ)→ I(X;Y ) as δ → 0+.
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Note that, mathematically, the SMI between Θ ∼ w(·) and X ∼ Pθ is

I(Θ;X) = BR(w,Mn) = EMD(w(·|x)‖w(·)).

So, (7) can be interpreted as (i) a redundancy in source coding, (ii) as the minimal value of (6)
and, (iii) as the distance between a posterior and a prior. Of great curiosity, the SMI has a fourth
interpretation as a rate of transmission across an information theoretic-channel.

An information-theoretic channel is a conditional density p(y|x) we intend to use repeatedly
that gives the distribution of the y’s received given the x’s that were sent. Obviously we would
like p(y|x) to concentrate on the line y = x but errors in transmission of x, i.e., noisy channels,
usually make p(·|x) spread out around x. Shannon’s Second Theorem identifies the capacity i.e.,
the maximal achievable average rate of transmission (in bits per usage), of the channel as

C = sup
p(x)

I(X;Y ). (8)

The supremum is taken over possible source distributions because we are looking for a property of
the channel; the optimization is also used to define reference priors giving them the interpretation
as the (source) distribution for a parameter that permits fastest receipt of information from the
likelihood (regarded as a channel).

Expression (8) can be interpreted as saying there is an agent p(·) transmitting many independent
copies X, as fast as possible in bits per transmission and that for each X the receiver receives a
Y . Statistically, the message X is θ, the parameter value, and the channel is p(xn|θ) where xi is
the version of θ received by receiver i, i = 1, . . . , n so that Y = (X1, . . . , Xn) = Xn. Usually, one
assumes the received Xi’s are independent and identically distributed (IID) given θ. Because the
density is a product of the p(xi|θ)’s the n receivers pool their data xn = (x1, . . . , xn) and use it to
decode which θ was sent. If an agent were not transmitting at capacity, the rate of information
receipt by the n receivers would be lower than C. Using a reference prior implicitly assumes there
is an ‘agent’ transmitting the data optimally using the likelihood as a channel.

The mutual information also arises in data compression. Data compression means that we are
willing to sacrifice a bit of accuracy for the sake of big enough gains in some other sense, such
as speed of transmission. Imagine a variable X that we want to compress. The way we do this
in principle is to choose representatives x̂ of X, effectively converting X to a random variable X̂
taking finitely many values that we want to determine optimally. Now, I(X; X̂) is the average rate
of transmission if one imagines the channel p(x̂|x) in which X is sent but X̂ is received. So, we
want the channel that is slowest in the sense of fewest bits being received by a receiver on averagae
per usage subject to a constraint that ensures some minimal number of bits per usage is being
received on average. The condition that ensures some bits are transmitted at each usage of P (x̂|x)
is E(d(X, X̂)) ≤ D, where d(·, ·) is the distance or distortion between x and x̂ bounded by D ∈ R.
Specifically, we limit attention to conditional densities i.e., channels, in the set

PD = {p(x̂|x) :

∫
p(x)p(x̂|x)d(x, x̂) ≤ D}. (9)

These conditional densities have Bayes risk of X̂ as an estimator for X bounded by D under the
loss d. The rate distortion function (RDF) is

R(D) = inf
p(x̂|x)∈PD

I(X, X̂). (10)
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In effect, (10) optimizes over likelihoods, unlike decision theory where one optimizes over estimators.
Shannon’s Third Theorem is that the RDF – the smallest achievable transmission rate given D –
is the same as the distortion rate function – the smallest achievable distortion for a given rate of
transmission. The distribution acheiving the RDF lower bound does not have a specific name but
has been studied Blahut (1972b) and can be approximated by the Blahut-Arimoto algorithm as
explained in Sec. 4.1.

3 M-closed Class

We begin with the assumption that we have a model list P = {pk(·|θk) : k = 1, . . . ,K} where
θk ∈ Ωk ⊂ Rdk . With some loss of generality, the Ωk are assumed compact and that convergence
of a sequence of parameter values in Euclidean norm is equivalent to the weak convergence of the
distributions they index. Essentially, for each k, this makes the mapping θk → Pθk continuous so
that Pk = {pk(·|θk) : θk ∈ Ωk} is the contnuous image of a compact set and hence compact itself.
We assume the prior probabilities Wk on Ωk have densities wk with respect to Lebesgue measure
and that the across-model prior probability W has a density w(·) with respect to counting measure.

While the proof of our main theorem in this section is greatly simplified if the pk(·|θk)’s are
disjoint, we prefer to state a slightly more general result. Let θk0 ∈ Ωk0 and θk ∈ Ωk and write

Tn(θk0 , k) =

∫
Ωk

w(θk)e
−nD(Pθ0‖Pθk )dθk. (11)

Given our compactness assumptions, if the Pk are mutually disjoint, T (θ0, k)(n) = O(e−γn) for
some γ > 0. However, (11) can be given asymptotically more generally. For instance, if the dk
are increasing, as would be the case if the parametric families were nested, and we have dk0 < dk
then T (θk0 , k)(n) = O(ndk/2). This follows by Laplace’s method arguments, see de Bruijn (1958)
(Chapter 4), Walker (1969), Clarke and Barron (1988); sufficient regularity conditions can be
found in Clarke and Barron (1988) and are listed in Appendix A.

The within-model and across models marginals for the data are

mk(x
n) = m(xn|k) =

∫
wk(θk)pk(x

n|θk)dθk and m(xn) =
K∑
k=1

w(k)m(xn|k), (12)

where we use xn = (x1, . . . , xn) to be the outcome of a sequence of random variables Xn =
(X1, . . . , Xn) assumed IID unless noted otherwise. We use subscripts and conditioning inter-
changably, e.g., mk(x

n) = m(xn|k) and drop subscripts when no misunderstanding will result.
We begin by giving a codelength interpretation for the Bayes information Criterion (BIC) and

then justify the BMA from a Shannon theory optimization.

3.1 Model Identification

The BIC arises from seeking the model that has the highest posterior probability, i.e., the mode of
the posterior over models. This can be seen as taking the action that is optimal under a zero-one
loss function, see Kass and Raftery (1995). A variant on this comes from examining Bayes factors,
see Schwarz (1978), which are also optimal under zero-one loss. Whether one takes a decision
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theoretic stance or a hypothesis testing stance, one is led to maximize

logW (k|xn) = logm(xn) + logw(k) + log

∫
p(xn|θk)wk(θk)dθk,

in which the first two terms can be ignored. The first does not depend on k and in the second w(k)
is bounded above and away from zero so that logw(k) is negligible compared to the third term. If
we use Laplace’s method (or Lemma 3 in Appendix A) on the last term we get∫

p(xn|θk)wk(θk)dθk ≈ p(xn|θ̂k)
∫
e−(n/2)(θk−θ̂k)T Ik(θ̂k)(θk−θ̂k)wk(θk)dθk

≈ p(xn|θ̂k)
(

2π

n

)dk/2 (
det Ik(θ̂k

)−1/2
, (13)

where θ̂k is the MLE under model k and Ik(·) is the Fisher information of model k. Using (13) in
−2 logW (k|xn) and simplifying leads to

BIC(k) = BIC(k, xn) = log p(xn|θ̂k)−
dk
2

log n

as the BIC value for model pk. Choosing the model with largest BIC(k) is consistent under mild
conditions, but see Berger et al. (2003) for an even better approximation.

Here, we provide a justification for the BIC based on Shannon theory. This is more reasonable
since the zero-one loss treats two wrong models as equally wrong even when one is much better
than the other. So, recall that Aitchison’s theorem shows that the Bayes code i.e., the code based
on m(·), is optimal because the objective function is the redundancy (see 4, 5, and 6) integrated
over all parameters and hence called the Bayes redundancy; this terminology is not standard but is
frequently used, see Yu (1996), Catoni (2012). To extend Aitchison’s Theorem to the multi-model
case, we begin with a proposition comparing mixture densities from different models.

Proposition 1: Fix θ0 ∈ Ωk0 as the true value of the parameter and suppose we are comparing
model k to model k0, where dk > dk0 . Then, if Tn(θ0, k) = o(n−dk/2), we get

mk(x
n)

mk0(xn)
= OP (n−(dk−dk0

))→ 0,

in Pk0 probability, under the regularity conditions A1–A7 in Appendix A.
The proof is given in Appendix B.
Unfortuntely, the proposition as stated only handles the case that the biggest model is true.

Writing Pnθk for the n-fold product of Pθks, Aitchison’s Theorem can be stated as

arg inf
Q

K∑
k=1

∫
w(θ, k)D(Pnθk ||Qn)dθk = m(·).

Note that here, m(·) has an argument of the form xn. Now suppose we have K models in increasing
size and the K-th, the largest, is true. Then, we have

log
1

mK(xn)
= log

1

w(K)mK(xn) +
∑K−1

k=1 w(k)mk(xn)

= log
1

mK(xn)
+ log

1

w(K) +
∑K−1

k=1 w(k)mk(xn)/mk0(xn)
.
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A Laplace’s method argument gives that when model K is true and the true parameter value is θK

log
1

mK(xn)
= − log p(xn|θ̂K) +

dK
2

log n− 1

2
log(2π)dK |I(θ̂k)|+ log

1

wK(θ̂K)
+ oP (1)

= −BIC(K) + Ĉ + oP (1)

in Pθ0-probability as n → ∞ and Ĉ converges to a constant. So, if we choose a uniform partition
of the space of xn-values with side length ∆ then as D → 0 the partition becomes finer and finer.
Write the discretized form of mK(xn) and mK,∆(xn). Then, the Shannon codelengths satisfy

logd 1

mK,∆(xn)
e ≈ logd 1

mK(xn)
e

which can be approximated as in Lemma 3 in Appendix A or Clarke and Barron (1988). Thus,
when the largest model K is true and θK ∈ ΩK is the true value of the parameter, maximizing the
BIC is equivalent to choosing the model that assigns the shortest Bayes codelengths to the data
for a fine enough discretization. Since the largest model is rarely true, we have the following.

Theorem 1: Assume the regularity conditions A1–A7 in Appendix A. Also, assume there is a
K ′ so that if k0 < K ′

Tn(θ0, k) = O(n−(K′−dk0
)/2), (14)

and that for k0 ≥ K ′ is a γ > 0 so that for k ≥ K ′

Tn(θ0, k) = O(e−γn). (15)

Then, using the BIC for model selection in a finite M -closed problem is equivalent to choosing the
model in P assigning the smallest Shannon codelength to the string formed by the data under a
suitably fine discretization in Pk0-probability, in the limit of large n.

The proof is in Appendix B.
Satisfying the hypothesis (15) can be difficult because if there is any overlap between the

densities indexed by Ωk1 and Ωk2 for some k1 < k2 a key product in the proof (see 32) does not
go to zero in probabilitiy. In nested cases, one way to satisfy (15) is by careful prior selection so
that Wk1 assigns very little of its mass to Ωk1 . Even though this might require large n to get useful
results, one can let θ0 ∈ Ωk2 , fix ξ > 0 and write

Nξ(θ0, k1) = {θk1 ∈ Ωk1 : D(Pθ0‖Pθk1
) > ξ}.

Now, assume we have a sequence of priors Wk1,n(·) with Wk1,n(N c
ξ (θ0, θk1)) ≤ e−αn for some α > 0.

Then, since D(Pθ0‖Pθk2
) is lower semi-continuous and hence bounded on compact sets,

Tn(θ0, θk1) ≤
∫
Nξ

w(θk)e
−nD(Pθ0‖Pθk1

)
dθk1 +

∫
Nc
ξ

w(θk1)e
−nD(Pθ0‖Pθk1

)
dθk1

≤ Wk1,n(Nξ)e
−εn + CWk1,n(N c

ξ )nk2/2

≤ e−εn + e−α
′n = O(e−nmax(α′,ε)), (16)

where α′ ∈ (0, α), nk2/2 comes from a Laplace’s method argument, and C > 0 is a constant.
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An alternative to careful prior selection is to force nested families to be disjoint. One can
perturb the smaller families a little so that they are formally disjoint from the larger families but
very little model mis-specification has been introduced. One way to do this in some generality is
to observe that many common parametric families such as the normal, binomial, Gamma, Poisson,
Dirichlet, multinomial and so forth can be written as fη(x) = eη·x−ψ(η)f0(x) i.e., as an exponential
tilt, see Blahut (1987) Chap. 4, of a ‘carrier’ f0 ≥ 0 where η is the natural parameter and ψ is
the normalizer. Clearly, different f0’s yield different parametric families. The simplest example is
to write the N(µ, 1) density as f(x) = eµx−µ

2/2φ(x) where φ is the density of a N(0, 1). This is a
subfamily of the N(ν, σ2) family but changing φ to the density of a tk random variable for some
moderate value of k gives a family that is no longer a subfamily of N(µ, σ2) even though it is very
close to the N(µ, 1) family.

Likewise, the Exponential(β) distribution can be regarded as a Gamma(1, β) distribution which
is nested in the two parameter Gamma(α, β) distribution. One can perturb the carrier of the
Gamma(1, β) distribution to make it no longer Gamma(1, β) and hence no longer a subfamily of
the Gamma(α, β), but still very similar to the α = 1 subfamily.

3.2 Prediction Perspective

Our goal here is to predict the next outcome Xn+1 given n outcomes xn. One standard predictor is
the Bayes model average, see Hoeting et al. (1999), the summary of the models and their posterior
weights. Denote the predictive distribution by m(xn+1|xn) and the joint posterior i.e., for k and
θk, by w(k, θk|xn) with marginal posteriors analogously denoted. Then, in contrast to the standard
L2 justification of the BMA, we can condition on xn, and state Aitchison’s theorem as follows.

Proposition 2: Let Q be a distribution for Xn+1 having density with respect to the same
dominating measure as the pk’s. Then,

arg inf
Q

K∑
k=1

∫
w(k, θk|xn)D(Pθk ||Q)dθk = m(·|xn). (17)

Moreover, the predictive density m(xn+1|xn) occuring in (17) is the BMA for the next outcome
and the point predictor under squared error loss is its condtional expectation given Xn = xn.

Proof: The result follows immediately from writing

m(xn+1|xn) =
K∑
k=1

∫
p(xn+1|k, θk)w(θk|k, xn)w(k|xn)dθk =

K∑
k=1

m(xn+1|xn, k)w(k|xn) (18)

and applying Aitchison’s theorem with the posterior in the role of the prior. �
Thus, in the M -closed setting, model selection identifties a model while averaging generally

does not. On the other hand, predictions from model averages tend to be better than predictions
from selected models, especially for small samples. Moreover, because Mn is Bayes optimal under
relative entropy and D(Pnθ ‖Mn) =

∑n−1
i=0 EθD(Pθ‖M(·|Xi)), (17) means the BMA is sequentially

the minimum relative entropy density predictor and estimator.

4 M-Complete Class

Information theoretic ideas have been explored in M -complete problems from a variety of perspec-
tives. In terms of model identification there have been two basic approaches although both involve
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finding parametric families with useful information theoretic properties. One is to find an ME or
MDI model and assess its sensitivity to perturbations of its inputs hoping to be satisfied that the
stability is reasonable. Another approach invokes the RDF to find a generic collection of models
that lead to very similar inferences. In both cases, the argument is that if the inferences are robust
to the modeling strategy they are more likely to be valid. On the other hand, from a prediction
perspective, the AIC and its offshoots have had a greater impact than robustness.

4.1 Model Identification

Recall that (3) identifies a parametric family say Ωλ consisting of elements p∗(x|λK0 ) based on
maximum entropy given a collection of statistics Tk for k = 1, . . . ,K with constraints ETk(X) = λk.
It is natural to ask what choices for the Tk’s are reasonable and whether any of the resulting
p∗’s actually fit the data generating mechanism. This comes down to asking (i) if the parameter
estimates are reasonable, see Soofi et al. (1995) Sec. 4, (ii) if the constraints match those of the
data generator, see Ebrahimi et al. (2008), and (iii) fundementally how these ensure (or fail to
ensure) that D(P‖P ∗λ ) is small, see Mazzuchi et al. (2008). Here, we use P with density p to
mean the actual data generator which we hope is an element of Ωλ and P ∗λ to mean the probability
associated with the density p∗(x|λK0 ).

Observe that if we model the data generator P by p∗(x|λK0 ) ∈ Ωλ as in (3) then we can write

D(P‖P ∗λ ) =

∫
p(x) log

p(x)

p∗(x|λ)
dx = −H(P ) +

∫
p(x) log

1

p∗(x|λ)
dx

= −H(P )−
∫
p(x)

[
logC(λK0 ) + η0 +

K∑
k=1

ηkTk(x)

]
dx

= −H(P )−
[
logC(λK0 ) + η0 + EpηkTk(X)

]
(19)

So, it is seen that

∃ λ P = Pλ ⇐⇒ D(P‖P ∗λ ) = H(P ∗λ )−H(Pλ) (20)

because both sides are equivalent to EpηkTk(X) = EpληkTk(X) see Soofi et al. (1995) and Ebrahimi
et al. (2008). One implication of (20) is that tests based on the entropy difference on the right in
(20) must assume P ∈ Ωλ to be valid, see Mazzuchi et al. (2008) p. 431.

Given this, there are two cases. First, if the constraints are reasonable so that the assumption
that the data generator is in the parametric family (3) is tenable, we want to know (20) is small.
To check this, we must estimate the two terms on the right in (20). Usually, the second is estimated
nonparametrically. For instance, one can take the entropy of the empirical distribution function
(EDF) F̂n; other estimators are possible as well. From F̂n, we can find λ̂, an estimate of λ from
the constraints, i.e., for all k, set EF̂nTk(X) = λ̂k and write the probability associated with F̂n as

Pλ̂. Using this λ̂, we can define the set Ωλ̂ and obtain P ∗
λ̂

= arg maxP∈Ωλ̂
H(P ), giving the second

last term in (20) and therefore a value for D(Pλ̂‖P
∗
λ̂

). This procdure is necessary because F̂n is a

proxy for P that is needed for both terms on the right in (19) and to obtain (20).
If D(Pλ̂‖P

∗
λ̂

) is small, we can assume that the constraints have produced a useful parametric
family that has a density in it that we can plausibly use for prediction or other inferences and our
estimate of the parameter indentifying that density is good. If the difference is not small then we
know that our choice of λ̂ is poor because we have assumed P ∈ Ωλ for some λ.
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Second, if the constraints are not reasonable so that P /∈ Ωλ̂ for any λ then in (20), the estimate

Ĥ(Pλ) = H(F̂n) of H(Pλ) should be far from the estimate of H(P ∗λ ) leading us to conclude that
Ωλ was poorly chosen and forcing us to rechoose the constraints.

Since P is unknown, the only confusion that can arise occurs when our estimate of D(P‖Pλ)
is large: We cannot tell whether P ∈ Ωλ for some λ and we have chosen a poor λ̂ (i.e., the
nonparametric estimator is not well smoothed by the parametric family) or whether P /∈ Ωλ so
Ωλ itself is poorly chosen. On the other hand, we should be able to distinguish these two cases
by verifying that our estimate λ̂ is good or testing the sensitivity of inferences to different sets of
constraints as suggested in Soofi et al. (1995).

Note that this is a method that is to be used for the M -complete case because it de facto
assumes a data generator that is approximable and whose distance from a servicable approximation
can be assessed. It does not assume we will ever uncover the true data generator, just that we can
understand some of its properties and refine it until our approximation is sufficiently good.

Going one step further into the realm of hard-to-get-at models, if the true model is too hard
to approximate reliably then we might seek a distribution that can act as a surrogate. Recall the
RDF, treat the Θ as a parameter whose information is being compressed into the data, and find
the parametric family that achieves the RDF lower bound. So, write (9) and (10) as

PD =

{
p(x|θ) :

∫ ∫
p(x|θ)w(θ)d(x, θ)dxdθ ≤ D

}
and R(D) = inf

p∈PD
I(Θ, X). (21)

Note that I(Θ, X) is Lindley’s measure of the information in X about Θ, see Lindley (1956). It is
shown in Blahut (1972b) that the RDF lower bound for given D is achieved by

p∗λ(x|θ) =
m∗λ(x)e−λd(x,θ)∫
m∗λ(y)e−λd(y,θ)dy

where m∗λ(x) is determined from ∫
w(θ)

e−λd(x,θ)∫
m∗λ(y)e−λd(y,θ)dy

= 1

for x’s that have m∗λ(x) > 0, where λ = λ(D) ≥ 0 is a transformation (usually decreasing) of D from
the Bayes risk scale to a factor in the exponent. Here, m∗λ is the marginal, m∗λ(x) =

∫
p∗λ(x|θ)w(θ)dθ;

see Cover and Thomas (1991) Chap. 13.7 for a derivation. See Yuan and Clarke (1999a) for its
inferential properties in terms of the resulting posteriors and see Yuan and Clarke (1999b) for an
example of how to use these densities in data analysis.

The main technique for obtaining p∗λ(x|θ) is the Blahut- Arimoto algorithm, see Blahut (1972a,b)
and Arimoto (1972); see Csiszar and Tusnady (1984) for its convergence properties. This algo-
rithm is a well-known member of the larger class of alternating minimization algorithms (sometimes
called alternating projection algorithms) that have been successful in solving optimization prob-
lems in two variables, here x and θ since λ is given. (However, in general neither x nor θ need
be unidimensional.) Indeed, the popular EM algorithm can be regarded as a special case of alter-
nating minimization, see Gunawardana and Byrne (2005) who provide a re-interpretation of the
EM-algorithm in information-theoretic terms.

The form of the algorithm that we implemented is described in Cover and Thomas (1991),
see Chapter 13.8 for the conversion of the RDF into a double minimization problem making the
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alternating minimization algorithm class applicable. Fix d, λ, w, and an initial m0 to form

p1,λ(x|θ) =
m0(x)e−λd(x,θ)∫
m0(y)e−λd(y,θ)

Marginalizing gives

m1(x) =

∫
p1,λ(x|θ)w(θ)dθ.

Next, replace m0 by m1 to form p2,λ(x|θ). Now one obtains m2 from p2,λ(x|θ) by mixing out θ.
Thus, one generates a sequence pj,λ(x|θ) for a given λ, x, and θ. Csiszar (1974) showed that
pj,λ(x|θ) converges to p∗λ(x|θ) as j → ∞, independently of m0. We assess convergence of pj,λ(x|θ)
to its limit p∗λ(x|θ) in supremum norm, terminating when supx,θ |pj,λ(x|θ)− pj−1,λ(x|θ)| ≤ ε.

To see what p∗λ(x|θ) looks like for unidimensional θ, we used code in which θ ∈ [−4, 4] and
x ∈ [−8, 8] assume values on an evenly spaced grid, both with 200 points, see www.ccs.miami.

edu/\~bclarke/infopapers/PCLIT. Then, we chose λ = 1.5, 3, used two priors N(0, 1) and t2,
and three loss functions, squared error, absolute error, and linex loss. The linex loss was studied
in Zellner (1986) and is asymmetric; we set b = 1 and a = 2.5. A representative set of the 12
plots are shown in Fig. 1. The typical shape of a minimially informative likelihood (MIL) p∗λ(x|θ)
is flattish central portion which rises sharply as θ gets close to ±4. The central portion is flatter
for heavier tailed priors i.e., more dispersed input signal. In addition, the ‘U’ shape of the surface
becomes relatively stronger for λ small, i.e., large `, permitting more distortion. In addition, the
number of ‘bumps’ increases as we move from linex, to squared error, to absolute error, i.e., as
d(·, ·) loses convexity. The effective range of x shifts as θ varies. In all cases, p∗λ(x|θ) as a function
of θ for fixed x and λ is unimodal while for fixed λ and θ it can be multimodal in x.

Since these parametric families are data-compression optimal in their various settings, we can
use them to form posteriors and assess the stability of the inferences. So, consider the data on
2010 constant price percent change in GDP for the 17 Eurozone countries available at imf.org.
These data are very difficult to model, but one can imagine they admit a model, however complex,
that would be impossible to approximate well and thus would be in the M -complete problem class.
Using these 17 data points, we can form a posterior for each of the 12 parametric families. Four
of these are shown in Fig. 2. These posteriors are representative of the 12 that we obtained and
are broadly in agreement over values of λ and choices of d and prior. All have roughly the same
location; the differences are in the dispersion and these are (arguably) not very large. The seeming
bimodality in the second row of panels in Fig. 2 is a computational artifact; requiring a smaller
ε for uniform approximation (in x and θ of pj,λ(x|θ)) would smooth these out at the cost of more
computing time unless a more sophisticated algorithm were used.

4.2 Prediction Perspective

The AIC is one of the most interesting information criteria because it has been examined in so
many ways. Originally, given in Akaike (1974), here we present a clarified derivation. The goal
is to find the distribution Q, from a collection of distributions, that is as close as possible to an
unknown true distribution, P . That is one seeks to minimize

D(P‖Q) = −H(P )−
∫
p(x) log q(x)dx (22)
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Figure 1: The four panels show examples of p∗λ’s. Upper left: Absolute error, t2 prior, λ = 1.5.
Upper right and lower left: Squared error with normal and t2 priors and λ = 1.5, 3 respectively.
Lower right: Linex loss with t2 and λ = 3.

-4 -2 0 2 4

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

posterior distribution abs loss t2 prior lambda=1.5

thval

pos
tnu
m/p

ost
den

-4 -2 0 2 4

0.0
0

0.0
5

0.1
0

0.1
5

posterior distribution sqerr norm prior lambda=1.5

thval

pos
tnu
m/p

ost
den

-4 -2 0 2 4

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

posterior distribution sqerr t2 prior lambda=3.0

thval

pos
tnu
m/p

ost
den

-4 -2 0 2 4

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

posterior distribution linex t2 prior lambda=3.0

thval

pos
tnu
m/p

ost
den

Figure 2: The four panels show the posteriors corresponding to the parametric families in 1.
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over Q. For practical purposes, it is enough to maximize the integral in the second term over q.
The problem is that this cannot be done because P is unkown. To make the problem easier, let us
assume Q comes from a parametrized family of densities q(·|θk) for a range of k and write

∆(θk) =

∫
p(y) log q(y|θk)dy = EY log q(Y |θk),

where EY is the expectation over Y using P . Now we can consider ∆(θ̂k) where θ̂k = θ̂k(x) =
arg min q(x|θk) is the MLE from q(·|θk) given x. Now, even though P is unknown so we cannot
use ∆(θ̂q) directly, we can approximate it by log q(x|θ̂k) which is known. This would lead us to
choose the family qk with the highest maximized likelihood – a reasonable proposition except that
adding more parameters will typically increase the maximized likelihood. Another problem is that
log q(x|θ̂k) as an approximation for ∆(θ̂k) is biased. So, we can improve the approximation by using

Bias = EX

[
∆(θ̂k)− log q(X|θ̂k)

]
as a correction to log q(x|θ̂k), where EX means E is taken over X using P . To get a useful form
for Bias, write it as

EX

[
∆(θ̂k)− log q(X|θk)

]
+ EX log

q(X|θk)
q(X|θ̂k)

, (23)

for some choice of θk. The first term in (23) is

EXEY

[
log q(Y |θ̂k)− log q(Y |θk)

]
(24)

because EX log q(X|θk) = EY log q(Y |θk). Now, setting p(·) = q(·|θk) for some fixed value of θk,
(24) becomes

−EXD(Q(·|θk)‖Q(·|θ̂k)). (25)

So, if Y = (Y1, . . . , Yn) where the Yi’s are IID, (25) becomes

−EXnD(θk‖θ̂k) = −1

2
EXn(θk − θ̂k)2I(θ̃k) (26)

by Taylor expanding the relative entropy D(θk‖θ̂k) between q(·|θk) and q(·|θ̂k) at θ̂k. Here, I(θ)
is the Fisher information of q(·|θk) evaluated at θ̃k, a point between θk and θ̂k. By the choice
of Y we also get X = (X1, . . . , Xn) IID so by consistency of the MLE we get that θ̃k → θk
in probability and hence I(θ̃k) → I(θk). Making this substitution lets us invoke the asymptotic
normality of the MLE θ̂ and so recognize the argument of the expectation in (26) as a χ2 with
dim(θk) degrees of freedom, asymptotically as n → ∞. So, we can approximate the first term
in (23) as −dim(θk)/2. Likewise, the second term in (23) can be recognized asymptotically as
−dim(θk)/2 by assuming Wilks’ theorem in L1. Taken together, Bias ≈ − dim(θk) and therefore
maximizing log q(xn|θ̂(xn)) − dim θk is approximately equivalent to minimizing (22) when P is of
the form q(·|θk). So, we have a model selection principle, ostensibly for the M -closed setting.

Let us compare the sampling distributions of the AIC and BIC for selecting among a large
but finite collection of linear models based on a common set of explanatory variables. First, the
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sampling distribution of BIC will be much tighter than that of the AIC. This means the BIC is
more efficient. Second, the sampling distribution of the BIC is located more-or-less at the data
generator (assuming it is in the family of models) while the AIC is frequently located away from
the data generator. That is, the AIC is inconsistent, see Shibata (1983), because the probability
of choosing too large a model is not small.

So, if the AIC is not very good for model selection....what is it good for? One answer is
prediction. Shibata (1981) showed that maximizing the AIC in the limit of increasingly many
variables provides a way to achieve the optimal sum of squared errors in prediction in the limit
of increasingly many models and sample size. Moreover, Shibata (1980) shows that the AIC has
an efficiency property in the same limiting sense. So, although intended for model selection in
the M -closed case, ironically, AIC has its optimality properties in the predictive M -complete case.
Most recently, this same sort of property – consistency, asymptotic in the size of the model space –
has been demonstrated for a variety of methods including the AIC, see Yanagihara et al. (2012).

Suppose we apply a criterion such as AIC to a model list and are in the imprudent case that
one of the variables physically necessary for describing the given phenomenon only occurs in one
of the models, has a meaningful but not overwhelming effect, and we were unlucky enough to get
a data set that did not let us include it. Then, as the sample size grows, even if the model list
grows and we get a model that appears consistent, it will be only be consistent in the sense that
the variable we have incorrectly omitted has been itself modeled by other variables – even though
the omitted variable is physically necessary to describing the response.

This property of the AIC – searching for models that are useful – is used in van Erven et al.
(2012). They advocate using the AIC initially and then at some point switching to the BIC. Thus,
the AIC gets you in the right neighborhood of the true model and the BIC zeros in on the data
generator. Essentially, the AIC is being used to convert an M -complete problem into an M -closed
problem that BIC can solve well.

Another property that the AIC has that makes it compelling in an M -complete setting is that
optimality in the limit of large models is also seen in the oracle inequality of Yang (2005) who
shows that for smooth classes the squared error risk of using AIC converges at the minimax optimal
rate. This result extends Akaike (1978) who showed minimax optimality in a normal case.

Note that despite BMA and other model averaging methods having been applied successfully
in M -closed problems there is little literature on the use of averaging methods for prediction in the
M -complete case. An exception might be called Akaike model averaging using the AIC weights
rather than the BIC weights to form an average of models of varying complexity. This has been
suggested, but to date neither a theoretical nor compuational comparison seems to have been
done. See Burnham and Anderson (1998) Chap. 4.2 for a discussion and statistical references.
Interestingly, areas of application that confront large degrees of model uncertainty i.e., M -complete
problems, have already started using Akaike model averaging to good effect see Johnson and Omland
(2004) and Symonds and Moussalli (2010).

To complete this discussion of the AIC, we remark that Akaike (1981) proposes a Bayesian
version of his criterion. The basic criterion seems to be to add the ‘prior predictive log-likelihood’
to the ‘incremental log-likelihood’, respectively and then maximixe

AICB(k) =

∫
pk(x

n|θk)pk(yn|θk) logmk(y
n|xn)wk(θk)dx

ndyndθk

+

[∫
mk(x

n) logmk(x
n)dxn − logmk(x

n)

]
.
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This makes use of the data twice as in the earlier derivation of the AIC.
Finally, to complete this section we discuss another information-type criterion called the de-

viance information criterion or DIC first introduced by Spiegelhalter et al. (2002) but subsequently
developed by Berg et al. (2004) and Celeux, et al. (2006) for an EM/missing data context. The
central idea is to define a general concept of deviance

D(θ) = −2 log pk(x
n|θk) + 2 log h(xn)

where h is a known e.g., the constant function one or m(xn). One can regard

pD = EΘ|xnD(Θ)−D(EΘ|xnΘ) = D(θ)−D(θ̄),

the posterior mean deviance minus the deviance at the posterior mean (with mild abuse of notation),
as an effective dimension or more accurately as a complexity measure. Now, by analogy with the
AIC or BIC, the DIC is a combination of fit and complexity:

DIC = ¯D(θ) + pD = D(θ̄) + 2pD = 2 ¯D(θ)−D(θ̄)

= −4EΘ|xn log pk(x
n|θk) + 2 log pk(x

n|θ̄). (27)

Some simple manipulations using the results in the Appendix A give us an asymptotic approx-
imation to (27) and provide slightly more interpretability. In the simplest case, (27) is

DIC ≈ −4

∫
w(θ|xn) logw(θ|xn)− 4

∫
w(θ|xn) log

m(xn)

w(θ)
+ 2 log p(xn|θ̂)

= 4H(Θ|Xn = xn)− 4

∫
w(θ|xn) log

1

w(θ)
dθ − 4 logm(xn) + 2 log p(xn|θ̂)

≈ 4H(Θ|Xn = xn) + 4 logw(θ)− 4 logm(xn) + 2 log p(xn|θ̂)

= 4H(Θ|Xn = xn) + 2 log
w(θ)p(xn|θ̂)
m(xn)

+ 2 logw(θ)− 2 logm(xn) (28)

where the first approximation is using the MLE rather than the posterior mean and the second
uses the concentration of the posterior w(θ|xn) at θ.

The first term is the conditional entropy of the posterior which is asymptotically normal, i.e.,
w(θ|xn) ∼ N(θ̂, (nI(θ))−1. This means

H(Θ|xn) ≈ 1

2
log[(2πe)dk |nI(θ)|]. (29)

Moreover, as noted in Lemma 3 of Appendix A,

log
p(Xn|θ̂k0)wk(θ̂k0)

mk0(Xn)
=

1

2
log(2π)dk |nI(θ)|+ oP (1). (30)

Using (29) and (30) in (28) provides a lot of simplification, focussing on the sum of the conditional
entropyH(Θ|xn) – an average shortest codelength criterion – and− log 1/(w(θ)m(xn)) which can be
regarded as a sort of Shannon codelength under the product of marginals distribution for (Θ, Xn).
Otherwise put, minimizing the DIC over models is like asking the sum of posterior codelengths for
θ and the joint codelengths for (Θ, Xn) not to be any bigger than necessary.

19



5 M-Open

The M -open class of problems is more complex than either the M -closed or M -complete classes.
So, we expect tecniques that will perform well for M -open problems will be more complex than
those required for M -closed or M -complete problems. As before, we consider the identification and
prediction perspectives. However, the nature of M -open problems precludes model identification.
So, here, we take identification to mean the use of a unitary predictor i.e., a predictor not comprised
of subunits. By contrast, the prediction perspective means we seek a composite predictor, one that
is comprised of subunits that, hopefully, are intelligible. While heuristic, this distinction provides
a dividing line between the techniques of the two subsections below.

5.1 Predictor Identification

The task is to identify a predictor for a sequence x1, . . . , xn, ... without using knowledge of the
data generator. The agent issuing the predictions is called the Forecaster, F and the forecasts are
denoted pi for xi at time i; it is more typical for forecasts to be probabilistic than numerical. We
assume F has access to ‘experts’ Eθ who give predictions at time i based on q(·|θ) where θ is an
index of the various experts. The experts issue probability forecasts that F may use. Overall, this
can be treated as a sequential game between F and nature, N . Round 1 begins with each expert
indicating a prediction for x1. Then, F takes these predictions and forms another, hopefully good,
prediction. Finally N reveals x1 so that F and N settle up. Round 2 is the same excecpt that F ,
the Eθ’s, and N retain knowledge of previous predictions and outcomes; there is no restriction on
how N can choose x2. There are many variations on this basic sequential game and an important
compendium of material on this is Cesa-Bianchi and Lugosi (2006). However, key results go back
to Shtarkov (1988), Haussler and Barron (1992), and Cesa-Bianchi et al. (1997), among others.

Here, we focus on probability predictions and assume that the loss is assesed by codelength.
So, instead of evaluating the diffrence between xi and pi directly we phrase our cost in terms of the
difference between the codelengths of two words. The basic version of this is the following.

Suppose at stage i expert Eθ issues a distribution qθ(·|xi−1) and F issues a prediction p(·|xi−1).
Once N reveals xi, F’s loss is `(p(·|xi−1), xi) = log 1/p(xi|xi−1) and Eθ’s loss is `(qθ(·|xi−1), xi) =
log 1/qθ(xi|xi−1). Writing pn = p(xn) and qnθ = q(xn|θ), F’s cumulative loss over n rounds is
`(pn, xn) = log 1/p(xn) and Eθ’s is `(qnθ , x

n) = log 1/q(xn|θ).
A standard goal for F is to predict as well as the best expert by minimizing the ‘regret’ – the

extra bits one has to send due to not knowing which expert is the best. The (cumulative) regret of
not following Eθ is

`(pn, xn)− `(qnθ , xn) = log
q(xn|θ)
p(xn)

.

This can be maximized over θ and then minimized over xn. So, it is reasonable to predict using
the pn with the smallest minimax regret, namely

p∗ = arg inf
p

[
sup
xn

sup
θ

log
q(xn|θ)
p(xn)

]
, (31)

when it exists. A theorem due to Shtarkov (1988), see also Cesa-Bianchi and Lugosi (2006) (Chap.
9.4) gives that

p∗(xn) =
p(xn|θ̂)∫
p(xn|θ̂)dxn

,
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where θ̂ is the MLE. This is analogous to Proposition 2. This solution has been used in Rissanen
(1996) and the Bayesian version examined in Clarke (2007).

There are two steps to reformulating this sequential game so the solution will be more applicable
in the M -open case. First, assume there is side information available for each round. For instance,
for each i, each expert Eθ may be of the form qθ(xi|xi−1, zi) where the extra information zi as
available to the experts and to F . Often zi is understood to be a selection of the outcomes in
(x1, . . . , xi−1) indicating which ones are relevant at round i. Then, the experts reduce to pθ(xi|zi)
and a treatment analogous to (31) is in Cesa-Bianchi and Lugosi (2006), Chap. 9.9 and 9.10.

However, seeking a best overall expert contradicts the M -open feature that the data generator
is not structured enough for the ‘best expert’ to be a useful concept. So, a further generalization of
the structure is needed to permit the experts, i.e. predictors, to use the information more flexibly
whether it is past data in the xi’s or other data in the zi’s. Let Si−1 = (Si−1,1, . . . , Si−1,mi−1) where
Si−1,j depends only on the x’s and z’s up to time i − 1. That is, Si−1 is a string of length mi−1

of statistics for use at time i. Let Si−1 = (S1, . . . , Si−1) be the growing collection of statistics. An
expert is now of the form qθ(xi|Si−1) and F ’s choice at stage i is still denoted p(xi). Now, at stage
i, F might adopt a Bayesian view and weight experts θ by a prior w(θ) and choose p(xi) to make

log
w(θ)qθ(xi|Sn−1)

p(xi)

small over θ. So, F ’s Bayesian cumulative regret can be written

log

∏n
i=1w(θ)qθi(xi|Sn−1)∏n

i=1 p(xi)
,

where
∏n
i=1 p(xi) is merely convenient notation for F ’s optimal choice, suppressing dependence on

θ’s, xi’s and zi’s which may be present. It is natural to seek

arg inf
p(x1),...,p(xn)

[
sup
xn

sup
θ1,...,θn

sup
Sn

log

∏n
i=1w(θ)qθi(xi|Sn−1)∏n

i=1 p(xi)

]
,

and this amounts to finding the best sequence of experts to follow admitting that the particular
way each expert uses information is also part of the optimization. Thus a solution must identify a
way to select the Si’s and θi’s. Examples of this have been found but there is little general theory.

5.2 Prediction Perspective

This class of problems is so difficult even to conceive clearly that developments of prediction methods
remain in their infancy. However, there are signs of growth. The concept of information-theoretic
learning in reproducing kernel Hilbert spaces (RKHS) i.e., based on relevance vector machines
that are optimal in RKHS and have information theoretic properties, is gaining some attention
see Principe (2010). Loosely, the idea is that RKHS’s come up frequently in signal processing,
a key topic in information theory even if only indirectly based on Shannon theory. So the role
of the reproducing kernel and the implications of the structure it imposes has an effect on the
storage, compression, and transmission of information. The Representer Theorem, see Scholkopf
and Smola (2002) Chap. 4, is a key result in RKHS’s and gives an optimal predictor in an
M -open setting. Choosing the kernel information theoretically or using some kind of information
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driven model average of Representer Theorem solutions may provide good performance for problems
in the M -open class, although how these individual learners combine for improved prediction or
decoding under information theoretic principles remains unclear. However, the body of work,
already extensive, is growing.

6 Conclusions

Here we have partitioned the class of statistical problems into three subclasses, M -closed, M -
complete, and M -open depending on the complexity of the modeling task. Within each class we
have defined two perspectives, the identification perspective and the prediction perspective. Thus,
we have examined six problem classes. We have argued that the techniques appropriate for each of
these six classes are different and identified what we think are possible if not good techniques for
each. The take-home message here is an instance of the ‘no-free-lunch’ theorem, Wolpert (1997):
Good performance of a technique on one class of problems will be balanced by poor performance
of the technique on another class of problems so that generic features of each given problem must
be considered for optimal technique selection.

Acknowledgements: The authors are grateful to Prof. E. Soofi whose comments and suggestions
greatly improved this paper.

Appendix A: Regularity Conditions and Background Results
Here we briefly record the regularity conditions mentioned in Theorem 1 and the implications

that we use from them. Note that the first three are essentially the Wald (1949) hypotheses for
consistency of the MLE. The remaining assumptions are to control the behavior of the likelihood.

A1 For each x, as ‖x‖ → ∞, p(x|θ)→ 0.

A2 For some large r > 0,

E

(
log sup

θ′:‖θ′−θ0‖>r

P (X|θ′)
p(X|θ0)

)2

<∞.

A3 For each θ and δ > 0 small enough, the function

ρ(x|θ, δ) = sup
θ′:‖θ′−θ‖<δ

p(x|θ′)

satisfies

E

(
log

p(X|θ0)

ρ(X|θ, δ)

)
<∞.

A4 For each x, p(x|θ) is twice continuously differentiable with respect to θ.

A5 The Fisher information matrix I(θ0) exists and is positive definite.

A6 The prior density wk with respect to Lebesgue measure on R is continuous and w(θ0) > 0.

A7 For some ξ > 0 and every j, k = 1, . . . , d

E sup
‖θ−θ0‖<ξ

∣∣∣∣ ∂2

∂θj∂θk
log p(X|θ)

∣∣∣∣2 <∞.
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Now, it is not hard to prove the following.
Lemma 1: Under assumptions A1 through A6, the event

Pk,θ̂(X
n)

mk(Xn)
≤ a(1− e−a′n)

( n
2π

)d/2
(det ln Î(θ̂))1/2/w(θ̂)

has probability going to 1, under Pk,θ0 , as n → ∞. Here, θ̂ is the maximum likelihood estimator

under Pk,θ, Î(·) is the empirical Fisher information and a, a′ > 0 are constants. If A7 is added, then

the empircal Fisher information Î can be replaced by its limit I(θ0), again with Pk,θk probability
going to one as n→∞.

Proof: This is substantially due to Walker (1969), see also Clarke and Barron (1988), Appendix
A) For the last statement, take the supremum over a small set around θ̂0 inside the expectation,
invoke the consistency from A1–A3 and apply A7. �

Lemma 2: With Pθk probability going to one as n→∞, A1–A6 give the inequality

Pk,θ0(Xn)

Pk,θ̂0(Xn)
≤ e−nÎ(θ̃)(θ̂0−θ0)2

Under A7 we also get
Pk,θ0(Xn)

Pk,θ̂0(Xn)
≤ e−n(1+a)I(θ0)(θ̂0−θ0)2

for some a > 0, where θ̃ ∈ B(θ0, θ̂0), in Pθ0 probability.
Proof: Assumptions A1–A3 guarantee that θ̂0 is consistent for θ0 so it is enough to focus on the

set {‖θ0 − θ̂0‖ ≤ η} for some pre-assigned η. On such as set, a second order Taylor expansion of
log p(x|θ) at θ̂0 gives the result, with A7 used to replace the empirical Fisher information with the
correct Fisher information and the θ̃ by θ0. �

Lemma 3: Let A1–A6 be satisfied. Then, for fixed k, as n→∞,∣∣∣∣∣log
p(Xn|θ̂k)wk(θ̂k)

mk(Xn)
− d

2
log

n

2π
− 1

2
log det Î(θ̃)

∣∣∣∣∣→∞.
If, in addition, A7 is satsified then∣∣∣∣∣log

p(Xn|θ̂k)wk(θk)
mk(Xn)

− d

2
log

n

2π
− 1

2
log det I(θ)

∣∣∣∣∣→∞.
Proof: This follows from applying Laplace’s method to m(xn). �

Appendix B: Proofs of Main Results in Section 3
Proof of Proposition 1: Write

mk(x
n)

mk0(xn)
=

mk(x
n)

pθ0(xn|k0)

pθ0(xn|k0)

mk0(xn)
. (32)

The first factor in (32) is

mk(x
n)

pθ0(xn|k0)
=

∫
wk(θk)e

−n((1/n) ln
p(xn|θ0)
p(xn|θk)

)
dθk =

∫
wk(θk)e

−nD̂(Pθ0 ||Pθk )dθk (33)
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where D̂(Pθ0 ||Pθk) is the empirical relative entropy. Let us ignore the integration over θk in (33)
write for each fixed θk ∈ Ωk

G(θk) = {D̂(Pθ0‖Pθk)−D(Pθ0‖Pθk) < (1/2) min
θk∈Ωk

D(Pθ0‖Pθk) (34)

so that

Gc(θk) = {D̂(Pθ0‖Pθk) > D(Pθ0‖Pθk) + (1/2) min
θk∈Ωk

D(Pθ0‖Pθk). (35)

Now, we can upper bound (33) by∫
wk(θk)IGθk e

−(n/2) minθk∈Ωk
D(Pθ0 ||Pθk )e−nD(Pθ0 ||Pθk )dθk

+

∫
wk(θk)IGcθk e

−D̂(Pθ0 ||Pθk )dθk

≤ e−(n/2) minθk∈Ωk
D(Pθ0 ||Pθk ) +

∫
wk(θk)e

−(n/2) minθk∈Ωk
D(Pθ0 ||Pθk )+D(Pθ0‖Pθk )

≤ 2e−(n/2) minθk∈Ωk
D(Pθ0 ||Pθk )

∫
wk(θk)e

−nD(Pθ0 |‖Pθk )dθk

≤ 2Tn(θ0, k) = O(ndk/2). (36)

This follows because e−nD(Pθ0 ||Pθk ) is bounded by one since (i) the relative entropy is lower-
semicontinuous in its second argument for fixed values of its first argument and (ii) the union
of compact sets Ωk over k is compact in the topology of setwise convergence.

For the second factor in (32), A1–A7 in Appendix B and Lemma 2 ensure that

pθ0(xn|k0)

mk0(xn)
=
p(xn|θ0)

p(xn|θ̂0)

p(xn|θ̂0)

m(xn|k0)
≤
( n

2π

)dk0
/2√

det[I(θ0)]e−n(θ̂−θ0)T Ik0
(θ0)(θ̂0−θ0) = O(ndk0

/2),

(37)
with Pθ0-probability going to one, where θ̂ is the MLE in the k0-th parametric family and Ik0(·) is
the Fisher information of pk0 .

Now, using (36) and (37) in (32), the rate from the index of disjointness rate wipes out the rate
from the k0 model so the proposition follows. �.

Proof of Theorem 1: For countably many k, writing Pnθk for the n-fold product of Pθk ’s, Aitchi-
son’s Theorem can be stated as

arg inf
Q

K∑
k=1

∫
w(θ, k)D(Pnθk ||Qn)dθk = m(·).

Now, suppose model k0 is true. Then we have

log
1

m(xn)
= log

1

w(k0)mk0(xn) +
∑

k∈{1,...,K}\{k0}w(k)mk(xn)

= log
1

mk0(xn)
+ log

1

w(k0) +
∑

k∈{1,...,K}\{k0}w(k)mk(xn)/mk0(xn)
. (38)

If k0 < K ′ ofr some K ′ ≤ K, then Proposition 1 suffices. Otherwise, we must again see that
the second term in (38) is negligible.
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For k ≥ K ′ we use a version of (33) that follows from (36) and our hypothesis on Tn(θ0, k):
With Pθ0-probability going to one

mk(x
n)

pθ0(xn|k0)
≤ e−γn. (39)

Using this with (37) we get an extension of Proposition 1.
As before, when model k0 is true and the true parameter value of θk0 with MLE θ̂k0

log
1

mk0(xn)
= − log p(xn|θ̂k0) +

dk0

2
log n− 1

2
log(2π)dk0 |I(θ̂k0)|+ log

1

wk0(θ̂k0)
+ oP (1)

= −BIC(k0) + Ĉ + oP (1) (40)

in Pθk0
-probability as n→∞ and Ĉ converges to a constant. So, if we choose a uniform partition

of the space of xn-values with side length ∆ then as D → 0 the partition becomes finer and finer.
Write the discretized form of mk0(xn) and mk0,∆(xn). Then, the Shannon codelengths satisfy

logd 1

mk0,∆(xn)
e ≈ logd 1

mk0(xn)
e

which can be approximated using (40). �

References

Aitchison, J.(1975) Goodness of prediction fit. Biometrika 62, 547-554.

Akaike, H.(1974) A new look at statistical model identification. IEEE Trans. Auto. Control, 19,
716-723.

Akaike, H.(1978) A Bayesian analysis of the minimum AIC procedure. Ann. Inst. Stat. Math.,
30, 9-14.

Akaike, H.(1981) Likelihood of a model and information criteria. J. Econ., 16, 3-14.

Arimoto, S.(1972) An algorithm for computing the capacity of arbitrary discrete memoryless
channels IEEE Trans. Inform. Theory 18, 14-20.

Ash, R.(1965) Information Theory Dover, NY.

Barron, A. and Cover, T.(1991) Minimum complexity density estimation. IEEE Trans. Inform.
Theory, 37, 1034-1054.

Berg, A., Meyer, R., and Yu, J.(2004) Deviance information criterion for comparing stochastic
volatility models JBES, 22, 107-120.

Berger, J., Ghosh, J., and Mukhopadhyay, N.(2003) Approximation and consistency of Bayes
factors as model dimension grows. J. Stat. Planning Inference, 112, 241-258.

Bernardo, J. and Smith, A.(1994) Bayesian Theory John Wiley and Sons, Chichester.

25



Blahut, R.(1972a) Computing of channel capacity and rate-distortion functions IEEE Trans.
Inform. Theory 18, 460-473.

Blahut, R.(1972b) An hypothesis testing approach to information theory PhD thesis, Cornell
University, Ithaca, NY.

Blahut, R.(1987) Principles and Practice of Information Theory Addison-Wesley, Reading MA.

Breiman, L.(1994) Bagging predictors Tech. Rep. 421, Stat. Dpt. UC Berkeley

Burnham, K. and Anderson, D.(1998) Model Selection and Inference Springer, NY.

Catoni, O.(2012) www.math.ens.fr/cours-apprentissage/Catoni/learning04.pdf

Celeux, G., Forbes, F., Robert, C. and Titterington, D.(2002) Deviance information
criterion for missing data models. Bayes Analysis, 1, 651-674.

Cover, T. and Thomas, J.(1991) Elements of Information Theory Wiley and Sons, NY.

Cesa-Bianchi, N. and Lugosi, G.(2006) Prediction, Learning, and Games Cambridge University
Press, New York.

Cesa-Bianchi, N., Helmbold, and Panizza, S.(1997) On Bayes methods for on-line Boolean
prediction NeuroCOLT Technical Report Series NC-TR-97-010.

Clarke, B.(2007) Information optimality and Bayesian models. J. Econometrics, 138, 405429.

Clarke, B. and Barron, A.(1988) Information-theoretic asymptotics of Bayes methods. Tech-
nical Report #26, Department of Statistics, University of Illinois.

Clemen, R.(1989) Combining forecasts: A review and annotated bibliography. Int. J. For., 5,
559-583.

Csiszar, I.(1974) On the computation of rate distortion functions. IEEE Trans. Inform. Theory,
20, 122-124.

Csiszar, I. and Tusnady, G.(1984) Information geometry and alternating minimization proce-
dures. Stat. and Dec., 205-237.

de Bruijn, N.(1958) Asymptotic Methods in Analysis Dover Publications, NY.

Dembo, A. and Zeitouni, O.(1993) Large Deviation Techniques and Applications Springer, NY.

Ebrahimi, N., Soofi, E., and Soyer, R.(2008) Multivariate maximum entropy identification,
transformation, and dependence. J. Mult. Anal., 99, 1217-1231.

Ebrahimi, N., Soofi, E. and Soyer, R.(2010) On the sample information about the parameter
and prediction Stat. Sci. 25, 348-367.

van Erven, T., Grunwald, P. and de Rooij, S.(2012) Catching up faster by switching sooner:
A predictive approach to adaptive estimation with an application to the AIC-BIC dilemma, with
discussion. J. Roy. Stat. Soc. Ser. B, 74, 361-417.

26



Gunawardana, A. and Byrne, W.(2005) Convergence theorems for alternating minimization
procedures. J. Mach. Learn. Res., 6, 2049-2073.

Haussler, D. and Barron, A.(1992) How well do Bayes methods work for on-line prediction of
{0, 1} values? Tech. Report, Computer and Information Sciences, U. Cal. Santa Cruz., UCSC-
CRL-92-37.

Hoeting, J., Madigan, D. , Raftery, A. and Volinsky, C..(1999) Bayesian model averaging
Stat. Sci. 14, 382-401.

Johnson, J. and Omland, K.(2004) Model selection in ecology and evolution. Trends in Ecology
and Evolution, 19, 101-108.

Kass, R. and Raftery, A.(1995) Bayes factors J. Amer. Stat. Assoc. 90, 773-795.

Kullback, S. and Leibler, R.(1951). On information and sufficiency. Ann. Math. Stat., 22,
79-86.

Kullback, S.(1954) Certain inequalities in information theory and the Carmer-Rao inequality.
Ann. Math. Stat., 25, 745-751.

Kullback, S.(1959) Information Theory and Statistics Wiley and Sons, NY.

Lindley, D.(1956) On a measure of the information provided by an experiment. Ann. Math. Stat.,
27, 986-1005.

Mazzuchi, T., Soofi, E., and Soyer, R.(2008) Bayes estimate and inference for entropy and
information index of fit. Econ. Rev., 27, 428-456.

Principe, J.(2010) Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives,
Springer, NY.

Raftery, A. and Zheng, Y.(2003) Performance of Bayes model averaging J. Amer. Stat. Assoc.
98, 931-938.

Rissanen, J.(1996) Fisher information and stochastic conplexity IEEE Trans. Inform. Theory 42,
40-48.

Sancetta, A.(2012) Universality of Bayesian predictions. Bayes Anal., 7, 1-36.

Sawa, T.(1978) Information criteria for discrimination among alternative regression models. Econo-
metrica, 46, 1273-1291.

Scholkopf, B. and Smola, A.(2002) Learning with Kernels MIT Press, Cambridge, MA.

Schwarz, G.(1978) Estimating the dimension of a model Ann. Stat. 6, 461-464.

Shannon, C.(1948a) A mathematical theory of communication. Bell Sys. Tech. J., 27, 379-423.

Shannon, C.(1948b) A mathematical theory of communication. Bell Sys. Tech. J., 27, 623-656.

Shibata, R.(1980) Asymptotically efficient selection of the order of the model for estimating
parameters of a linear process. Ann. Stat., 8, 147-164.

27



Shibata, R.(1981) An optimal selection of regression parameters. Biometrika, 68, 45-54.

Shibata, R.(1983) Asymptotic mean efficiency of a selection of regression variables. Ann. Inst.
Stat. Math., 35, 415-423.

Shtarkov, Y(1988) Universal sequential coding of single messages Trans. Problems Information
Transmission. 23, 3-17.

Soofi, E., Ebrahimi, N. and Habibullah, M.(1995) Information distinguishability with appli-
catin to the analysis of failure data. J. Amer. Stat. Assoc., 90, 657-668.

Spiegelhalter, D., Best, N.., Carlin, B., and van der Linde, A.(2002) Bayesian measures
of complexity and fit. J. Roy. Stat. Soc. Ser. B., 64, 583-639.

Symonds, M. and Moussalli, A.(2010) A brief guide to model selection, multimodel infer-
ence and model averaging in behavioural ecology using Akaikes information criterion. Behavioral
Ecology and Sociobiology, 65, 13-21.

Tsybakov, A.(2009) Introduction to Nonparametric Estimation. Springer, NY.

Wald, A.(1949) Note on the consistency of the maximum likelihood estimate Ann. Math. Stat.,
20, 595-601.

Walker, A. M.(1969). On the asymptotic behavior of posterior distributions. JRSSB, 31, 80-88.

Wolpert, D.(1997). No free lunch theorems for optimization. IEEE Ttrans. Evol.Comp., 1, 67-82.

Yanagihara, H., Wakaki, H. and Fujikoshi, Y(2012) A consistency property of the AIC for
multivariate linear models when the dimension and sample size are large. Tech. Rep. 12-08, Dept.
of Mathematics, Hiroshima University.

Yang, Y.(2005) Can the strengths of AIC and BIC be shared? Biometrika, 92, 937-950.

Yu, B.(1996) Lower bounds on expected redundancy for nonparametric classes. IEEE Trans. In-
form. Theory, 42, 272-275.

Yuan, A. and Clarke, B.(1999) A minimally informative likelihood for decision analysis Can.
J. Stat. 23, 876-898.

Yuan, A. and Clarke, B.(1999) An information criterion for likelihood selection IEEE Trans.
Inform. Theory 45, 562-571.

Zellner, A.(1986) Bayesian estimation and prediction using asymetric loss functions. J. Amer.
Stat. Assoc. 81, 446-451.

28


