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Abstract

In this paper, we describe an algorithm which can be used to generate the collection of networks, in order of increasing size, that

are compatible with a list of chemical reactions and that satisfy a constraint. Our algorithm has been encoded and the software,

called Netscan, can be freely downloaded from ftp://ftp.stat.ubc.ca/pub/riffraff/Netscanfiles, along with a manual, for general

scientific use. Our algorithm may require pre-processing to ensure that the quantities it acts on are physically relevant and because it

outputs sets of reactions, which we call canonical networks, that must be elaborated into full networks.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A reaction network is a system of coupled reactions,
in which outputs of some reactions are inputs to others.
Models for reaction networks are pivotal for our
understanding of biological systems. Such models
facilitate interpretation of data for metabolism, intra-
cellular signaling, and the regulation of gene expression.
The models also may predict results of further experi-
ments. Assembling the networks implicit in a list of
reactions is challenging because the list and the networks
are often large; they may involve hundreds or thousands
of kinds of molecules and reactions. Consequently,
relating information about proteins and genes to their
collective activity requires algorithms to assemble net-
works from reactions.
The problem we address is finding the networks, in

order of increasing number of reactions taken from a
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specified list, that satisfy a constraint which describes the
required function of the networks in terms of input and
output molecules. Such a sequential method allows one
to choose how extensive the search is. This option is
useful if the ensemble of networks to be generated is
very large, as may often be the case. Mittenthal et al.
(2001) provided a method for generating metabolic
networks in order of increasing size. Their method
depends on the stoichiometry of reactions and seems to
be restricted to metabolic networks, in which proteins
are enzymes but not reactants. However, in most
intracellular networks macromolecules can be reactants
and can catalyse reactions. Our algorithm provides a
way to assemble both metabolic and macromolecular
networks in order of increasing size; i.e. in order of
increasing number of distinct reactions.

1.1. Related work

The problem of assembling networks that meet
constraints from a reaction list is one aspect of the
problem of identifying networks compatible with data.
Network identification typically proceeds by compar-
ison of several data sets. The sets may display the
abundance of messenger RNAs and/or proteins from a
network with time-varying output, from versions of a
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network with alternative mutations or pharmacological
modifications, or from a network under various
environmental conditions. From such data, methods of
network identification may aim to show the pairwise
interactions among molecules, to recognize subnetworks
of molecules that are active in particular conditions,
or to make dynamical models that can predict the
network’s operation in new contexts (e.g. Koza et al.,
2001; Ideker et al., 2002; Kam, 2002; Kholodenko et al.,
2002; Segal et al., 2003; Tegnér et al., 2003). In making
dynamical models it is helpful to use a reaction list to
find reaction networks that can meet specific constraints.
Since this is the aim of our method, in the rest of this
section we review other work with this aim.
The problem of finding reaction networks that are

consistent with a reaction list and with constraints has
been approached in various ways in organic chemistry
(Corey and Cheng, 1989; Temkin et al., 1996) and in
biochemistry (Seriossis and Bailey, 1988; Happel et al.,
1990). Kosorukoff (1993, 1995, in Russian) implemen-
ted an algorithm for assembling networks. The motivat-
ing problem for that work arises in curriculum selection:
given a list of courses available at a university, along
with prerequisites and required advanced courses, which
courses should a student take, and in what order? A
course and its prerequisites correspond to a reaction.
This method seems to generate individual networks
rather than an ordered list of all networks compatible
with the constraints.
Mavrovouniotis et al. (1990) provided a method to

assemble all of the metabolic networks that meet
specified constraints. Mittenthal (1996) extended this
method from metabolic networks to macromolecular
networks. This generalized method will be called Mavro.
A limitation of Mavro is that it does not output any
networks until all of them have been generated and
the computation time required to generate all of the
networks increases exponentially with the number of
reactions. So, this approach is not well suited to the
assembly of large networks. For gene regulatory
networks Kolpakov et al. (1998) and Kolchanov et al.
(2000) developed a program called GeneNet, which
performs automated diagram generation using the
method of Mittenthal (1996). (See wwwmgs.bionet.nsc.
ru/mgs/systems/genenet/ for access to the software.)

1.2. Overview of our approach

Signaling networks provide a context for introducing
our method. Suppose we have a collection of responses
that we want to get as a function of certain input signals.
We call such input–output relations constraints.
The simplest constraints are of the form AbB; A OR
BbC; and A AND BbC; but more elaborate con-
straints are readily imaginable. For ease of exposition
here, we limit attention to networks that meet a single
constraint. In fact, however, Netscan supports multiple
constraints.
Our overall strategy for generating networks with

specified properties has three stages. In the first stage,
preprocessing, we specify the molecules, the allowed
reactions, and the constraints. For example, suppose the
molecules are proteins represented as sets of domains
(e.g. Rzhetsky and Gomez, 2001). The user specifies
reactions that occur through interactions of domains,
such as phosphorylation of a domain by a protein
kinase. The reactions among proteins can then be
specified in terms of reactions of their domains.
In the second stage, networks are generated to meet

the constraints. This is the most easily automated part of
our approach; the main point of this paper is to describe
the algorithm we have implemented to accomplish it.
The third stage, post-processing, may impose additional
performance criteria, such as energetics, on the networks
output by the program. Post-processing may also be
necessary to generate the actual forms of the molecules,
the connectivity of the network, and the multiplicity of
reactions.
Our program that implements the second stage is

called Netscan. It can be downloaded free from ftp://
ftp.stat.ubc.ca/pub/riffraff/Netscanfiles. This website
includes the source files and documentation, including
a manual, for their use. There are also several example
files so one can test the executable obtained from
compilation. (A sub-directory there contains the make-
files necessary for certain platform-dependent and
development-tool-dependent settings.)
This paper is organized as follows. Section 2 presents

the algorithm for Netscan. Section 3 relates our work to
other algorithms and issues in computer science, and
discusses some possible applications for Netscan.
Appendix A presents an example of the use of Netscan.

1.3. Canonical networks

From the reaction list and the constraint, the Netscan
algorithm generates sets of reactions that can satisfy the
constraint. The reactions in each set are analogous to
the pieces of a puzzle. They can be assembled into a
unique network, which we call a canonical network, that
is a simplification of an actual network formed by
combining all occurrences of a reaction into one. Each
canonical network must be post-processed into the
collection of actual networks it subsumed by reconsti-
tuting the connectivity and multiplicity of the reactions
in each actual network.
Formally, we say that two networks are equivalent

if and only if they are formed from the same set
of reactions. Note that this definition permits two
networks with different connectivities and different
numbers of usages of reactions to be equivalent.
Since the relation defined in this way is reflexive,

http://wwwmgs.bionet.nsc.ru/mgs/systems/genenet/
http://wwwmgs.bionet.nsc.ru/mgs/systems/genenet/
ftp://ftp.stat.ubc.ca/pub/riffraff/Netscanfiles
ftp://ftp.stat.ubc.ca/pub/riffraff/Netscanfiles
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symmetric, and transitive it is a well-defined equivalence
relation. Consequently, it leads to a list of equivalence
classes. These classes are disjoint, and every network is
in exactly one class. It can be seen that what we call
canonical networks are in fact canonical representatives
of classes of nets that are equivalent under this
equivalence relation.
We generated canonical networks rather than actual

networks for the sake of economy of computation.
Consider the following example: suppose we have the
overall constraint AbB þ E þ G to satisfy and the
permitted reactions are:

R1 A-B þ C;

R2 C-B þ D;

R3 D-E þ F ;

R4 F þ B-G:

If we start with A; the only molecule in the constraint
input, R1 is the only possible connection because it is the
only reaction using A: Then there is only one possible
connection from R1 to R2 and from R2 to R3: There are
three ways to connect R4: F must come from R3 but B

can come from R1 or R2; or from both. The output from
our program is just the list R1; R2; R3; and R4; so the
output does not distinguish among these three con-
nectivities. Note that two of the three networks use R4
once, while the third uses it twice. As actual networks
these three are not isomorphic. However, they corre-
spond to the same canonical net, in which both B’s are
connected to G and to the overall output B: Note that in
practice it is not necessary to construct the canonical
network before constructing the actual networks.
This reduction to canonical nets means that for a set

of N reactions there are at most 2N � 1 candidate
canonical nets. This is so because each candidate
canonical net either does or does not use each reaction,
and the net that uses no reactions should not be
counted. Without this reduction, there is no non-trivial
upper bound on the number of non-isomorphic ways to
connect inputs to outputs, nor is there any non-trivial
upper bound on the number of nets if one takes
multiplicity into account. Either of these upper bounds
would depend delicately on the number of inputs, the
number of outputs, and the number of permitted
reactions.
Although this example is not complicated enough to

show the procedure completely, a canonical net can in
general be systematically elaborated into its functional
nets. The procedure, for each compound, is to link the
various places it is produced as an output to the various
places it can be consumed as an input in all possible
ways. The resulting nets have their connectivity speci-
fied. In some cases this yields isomorphic copies of a
single net which should be eliminated. The set of nets
remaining can be searched for a fully specified viable
network which meets the constraints and is unique up to
graph isomorphism.

1.4. Assumptions about network dynamics in Netscan

We make several assumptions to standardize the
contexts in which our algorithm will apply. Our four
main assumptions about the dynamics of networks of
reactions are the following:

1. Any reactions for which substrates and enzymes are
currently available can occur at the same time.

2. The competition between reactions for molecules is
negligible. That is, the amount of each molecule used
by a reaction is insignificant relative to the amount
available.

3. Outputs of a reaction are available to all other
reactions. This assumption is satisfied if, for instance,
all reactions occur in a single well-mixed compart-
ment. Or, a mechanism might assign outputs at
random to reactions for which they can be inputs.
Note that this assumption is somewhat unrealistic:
cells often localize molecules in compartments such as
molecular complexes or organelles, so as to reduce
the diversity of uses for the output of each reaction.

4. Reactions are specific in that they ignore all
molecules except their specified inputs. In particular,
enzymes catalyse only those reactions they are
allowed to. Consequently, we treat each enzyme as
an input to a reaction. However, for convenience we
continue to denote the activity of an enzyme C

catalysing A-B as A-BjC even though our
program treats it internally as A þ C-B: The
amount of C consumed is not important under
Assumption 2. Like Assumption 3, this assumption is
not fully satisfied: enzyme specificity is high but not
perfect.

A constraint, which specifies the required function of
the generated networks in terms of input and output
molecules, has the syntax input-expressionb

output-molecule-list where input-expression is any com-
bination of AND and OR logical operations on
molecules, with parentheses allowed, for example:

ðA AND BÞ OR ðA AND CÞ OR ðB AND CÞbD þ E:

For a network to be generated, it must implement
the logic of the constraint; i.e. the network must only
output all of the molecules in the output-molecule-list

when the molecules present satisfy the logic of the input-

expression. When the input expression is not satisfied,
not all the output molecules may be output (though
some may).
For the above example of a constraint, if Netscan

generates a network, the network will only output both
molecules D and E from reactions in the network if at
least two of the molecules A; B; and C are present. For
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example, such a network could consist of the following
reactions (provided these reactions were contained in the
reaction list given to Netscan, of course):

A þ B-D;

A þ C-D;

B þ C-D;

D-E:

It is often necessary to ensure some molecules are
available at all times. For a molecule C; this is
accomplished by the command PRESENT C:Molecules
that are always present need not be used by a reaction
network; they are only used if required. In particular,
this may be useful for molecules such as ATP or NADH

which can be inputs and are freely available. Because the
supply of always-present molecules is effectively infinite,
within the program they are eliminated by modifying the
list of permitted reactions. For instance, the three
reactions

A þ B-C;

D-EjB;

B-GjF ;

PRESENT B

are simplified by the program to,

A-C;

D-E;

F-G:

After the program uses the above assumptions and
conventions early in its execution, no molecules will be
listed as merely present and all reactions will be of the
(non-enzyme) form input-list-output-list.
Disinhibiting an inhibitor speeds a reaction and

inhibiting a reaction slows it down. This may be done
by compounds that are be produced upstream or
downstream from where they act. That is, inhibition
and disinhibition are just mechanisms by which com-
pounds are fed forward or backward. These mechanisms
are implemented by sets of reactions that permit a
compound produced in one reaction to affect the rate of
another reaction. This is easy to see if one regards a
molecule that receives inhibition or disinhibition as
already having been produced in a prior process.
In particular, even though a constraint input expres-

sion can only consist of AND and OR logical operators
and not the NOT operator, Netscan can discover
networks that implement inhibition and disinhibition
and, more generally, positive and negative feedback.
The main way this is done is to include the reactions
necessary for constructing the mechanism. Conse-
quently, searching for these kinds of mechanisms may
require one to generate more nets than needed, winnow
down to reasonable candidates, and post-process them
to find the desired canonical nets which can be
elaborated into functional nets.
Suppose A disinhibits C by binding to B; an inhibitor

of C; causing dissociation of the complex B:C: (The
colon indicates a non-covalent association.) For this
to occur in a network generated by Netscan,
A þ B:C-C þ A:B must be on the reaction list.
Alternatively, A might modify B covalently so that A :
B is replaced by a compound AB: Similarly, the
inhibition of a molecule requires the interaction of the
inhibitor with that molecule in a permitted reaction.
Netscan will show a disinhibition reaction as part of a
pathway if the disinhibition makes a needed molecule
available. In these settings, the complex, B:C; of an
inhibitor B and the protein C it inhibits might need to be
freely available before the disinhibitor A is produced.
Suppose the form of feedback under consideration

uses a downstream molecule to affect an upstream
reaction. An important instance is where a molecule is
the output of a sequence of coupled reactions and
also affects the activity of an upstream enzyme.
For feedback to be incorporated in a generated network,
the reaction list must include at least two reactions in
which the compound to be fed back occurs. For
instance, if an enzyme E catalyses a reaction whose
outputs lead to a product that affects the activity of E

one must include two reactions, one with E as a catalyst
and one with E as an output. Often, in these cases, it is
necessary to include E from the beginning by the
command PRESENT E:
The following example may clarify these points:

R1 A þ C-B;

R2 B-C;

R3 B-EjD;

R4 A þ C-BjE;

PRESENT C;

PRESENT D;

AbB:

Four canonical nets are output: R1; R1;R2;
R1;R3;R4; and R1;R2;R3;R4: The first is trivial. The
second permits B to be fed back to C: In some cases,
the third can be post-processed by deleting R1 so the
feedback is to an enzyme which may upregulate
production of B: It seems that if R1 is deleted, then no
B is ever made because no E is initially available.
However, once some E is made, the replenishment of E

occurs by R3 and if R4 is much faster than R1; the latter
will contribute negligibly to the overall output.
The fourth case combines the second and third, in

which post-processing can delete R1 again. This fourth
case produces a form of positive feedback that can be
recognized as disinhibition. Indeed, let C ¼ C1 : C2; B ¼
A : C and E ¼ C1: It is seen that, D can act on A : C1 :
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C2 by forming D : A : C2 and releasing C1: In effect, D

disinhibits C1:
Netscan has a command-line option (�r) to delete

reactions that only replenish molecules declared PRE-

SENT. With that option, the useless reaction R2 is
deleted and two canonical nets are output: R1 and
R1;R3;R4: The first is trivial and the second can be
post-processed by deleting R1 by the same reasoning as
above.
We comment that negative feedback can be treated in

the same way. Here, we have been treating all feedbacks
as positive because we are searching for pathways in
which they appear. When the possible reactions are
listed and the pathways are generated it is seen that
feedback of either sort is just the interpretation we put
on a sequence of reactions. The reactions themselves are
qualitatively no different from any other reactions, and
neither are the molecules in them. Thus, correct
interpretation can then be included, as appropriate, in
post-processing.
2. The algorithm for Netscan

Here we explain how the algorithm for Netscan
works. Our problem is to find all subsets, from smallest
to largest, of a set of reactions that can form reaction
networks meeting an overall constraint.
When the user-specified reaction list and constraints

are input to Netscan, the program begins with lexical
analysis, parsing, and simplification to eliminate any
duplicate reactions. We do not describe this here.
(Details can be found in the Netscan manual.)
The first important conceptual stage is connectivity

testing. This is followed by a search for candidate
networks, from smallest to largest, and the testing of
each candidate, as it is found, against the logic of the
constraints.

2.1. Connectivity testing

Connectivity testing is used to eliminate useless
reactions quickly and early, before they can slow
the search for networks. For each constraint, it ensures
that there is a path of reactions from each input
molecule to at least one output molecule and a
path from each output molecule to at least one
input molecule. Connectivity testing uses the following
rules:

1. A molecule is considered ‘‘input-connected to a
constraint’’ if it is declared PRESENT or if it is
found in the input expression of the constraint or if
any of the reactions that generate it have inputs that
can be connected to the constraint inputs by a
sequence of coupled reactions.
2. A reaction is considered ‘‘input-connected to a
constraint’’ if all of its input molecules are input-
connected to the constraint.

3. A molecule is considered ‘‘output-connected to a
constraint’’ if it is found in the output list of the
constraint or if any reaction that uses it has outputs
that are connected to the constraint outputs by a
sequence of coupled reactions.

4. A reaction is considered ‘‘output-connected to a
constraint’’ if any of its output molecules are output-
connected to the constraint.

We comment that in item 3, if the ‘‘delete reactions
that only replenish molecules declared PRESENT’’
option is specified, a molecule that is PRESENT is not
considered ‘‘output-connected’’ to any constraint even
though it may be connected to the overall outputs by a
sequence of coupled reactions. Clearly, PRESENT

molecules are upstream of the constraint. However,
they are also downstream from the outputs because they
cycle. Our convention is to ‘cut’ the net immediately
after the constraint is met.
For each constraint, Netscan solves the above rules

for all reactions and molecules. It starts from each input
molecule and works forward through each reaction
using the molecule, finding and marking the reactions as
input-connected. Each reaction found then has its
output molecules marked as input-connected. The
process is repeated until no more reactions are found.
Circular paths are prevented by not following a path
already marked as input-connected.
Then, for each constraint, Netscan starts from each

output molecule and works backward through each
reaction producing the molecule, finding and marking
the reactions as output-connected. Each reaction found
then has its input molecules marked as output-con-
nected. The process is repeated until no more reactions
are found. Circular paths are prevented by not following
a path already marked as output-connected.
A reaction is considered useless if there is no

constraint for which it is both input-connected and
output-connected. All useless reactions are deleted.
Connectivity testing is repeated until no more useless
reactions are deleted.
A molecule is considered useless if it is not in the input

expression or output list of any constraint and it does
not feed any reaction that remains after useless reactions
are deleted. All useless molecules are deleted.

2.2. The search algorithm for Netscan

The program searches for networks using structures
called ‘‘searchsets’’. A searchset represents a partially
completed network. In particular, a searchset contains a
reaction list (giving the partially completed canonical
network), a disallowed list (containing reactions that
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will never be added to the network), and a search list
(containing required molecules).
Initially, the program creates a single searchset with

an empty reaction list, an empty disallowed list, and a
search list containing the molecules in the output lists of
all constraints. The algorithm then uses the following
steps:
1.
 If there are no searchsets, the program terminates.
Otherwise, the searchset with the smallest number
of reactions on its reaction list is processed by step 2
(in the case of a tie, an arbitrary searchset is picked).
2.
 The searchset’s reaction list is examined. If the
following conditions are met, the reaction list is
deemed to be a network candidate and is tested for
constraint logic as described in the next section:
a.
 The reactions use all of the molecules in all
constraint input expressions. b. The reactions
output all of the molecules in all constraint output
lists. c. All the molecules on the search list are
PRESENT, are produced by a reaction on the
reaction list, or are in a constraint input expression.
3.
 If there are no molecules on the searchset’s search list,
the searchset is deleted and the algorithm returns to
step 1. Otherwise, the molecule on the search list with
the least number of reactions generating it (looking
at the complete list of user-specified reactions) is
removed and examined to find the number of
reactions generating it that are not on either the
searchset’s reaction list or disallowed reaction list. If
one or more new reactions are found, the algorithm
proceeds to step 4. Otherwise, this step repeats.
4.
 If there are N new reactions producing a molecule,
2N�1 searchsets will replace the searchset being
processed, with a new searchset created for each
possible combination of reactions. Each new
searchset will be identical to the old searchset but
with all the new reactions added, either on its
reaction list or on its disallowed list. (For example,
if the new reactions were R4 and R5, three new
searchsets will replace the old one. The first will
have R4 added to its reaction list and R5 added to
its disallowed list. The second will have R5 added to
its reaction list and R4 added to its disallowed list.
The third will have R4 and R5 added to its reaction
list and nothing added to its disallowed list.) Also,
each new searchset will have the input molecules of
the reactions added to its reaction list (but not its
disallowed list) added to its search list. The
algorithm then continues at step 1.
2.3. Constraint logic testing

Before searching begins, Netscan generates a set of
test cases from the logic of each constraint. Then, as
each candidate network is found, it is tested against all
the cases. Networks that pass all the tests are output and
networks that do not are discarded.
Each test case is a set of inputs to the network along

with an expected output. The inputs consist of values
(present or not-present) for every molecule in the input
expression of the constraint. The output consists of a
value specifying if the molecules on the constraint’s
output list must all be present or cannot all be present.
For each test case, the molecules specified in the test

case are set to the values in the test case, PRESENT

molecules are set to be present and molecules not in the
test case are set to be not-present. The reactions are
simulated until the molecule values stabilize and then
the constraints’ output molecules are examined to
determine if they are all being generated. This result
must match the test case’s output value.
A network can only implement logical OR and AND

operations, not logical NOT operations. This is because
reactions create the AND of their molecular inputs and
molecules create the OR of reactions that can produce
the molecule. Because a network cannot implement all
possible logical operations, the number of test cases
usually can be reduced. In particular, test cases can be
eliminated if they have a present output and their inputs
are a superset of some other case. Similarly, test cases
can be eliminated if they have a non-present output and
their inputs are a subset of some other case.
Netscan considers all possible test cases and elim-

inates unnecessary ones. For example, consider the
constraint

ðA AND BÞ OR ðC AND DÞbE:

There are sixteen possible test cases (where 1 indicates a
molecule is present and 0 indicates not-present):
Case 1:
 A ¼ 0; B ¼ 0; C ¼ 0; D ¼ 0; Output=0,

Case 2:
 A ¼ 1; B ¼ 0; C ¼ 0; D ¼ 0; Output=0,

Case 3:
 A ¼ 0; B ¼ 1; C ¼ 0; D ¼ 0; Output=0,

Case 4:
 A ¼ 1; B ¼ 1; C ¼ 0; D ¼ 0; Output=1,

Case 5:
 A ¼ 0; B ¼ 0; C ¼ 1; D ¼ 0; Output=0,

Case 6:
 A ¼ 1; B ¼ 0; C ¼ 1; D ¼ 0; Output=0,

Case 7:
 A ¼ 0; B ¼ 1; C ¼ 1; D ¼ 0; Output=0,

Case 8:
 A ¼ 1; B ¼ 1; C ¼ 1; D ¼ 0; Output=1,

Case 9:
 A ¼ 0; B ¼ 0; C ¼ 0; D ¼ 1; Output=0,

Case 10:
 A ¼ 1; B ¼ 0; C ¼ 0; D ¼ 1; Output=0,

Case 11:
 A ¼ 0; B ¼ 1; C ¼ 0; D ¼ 1; Output=0,

Case 12:
 A ¼ 1; B ¼ 1; C ¼ 0; D ¼ 1; Output=1,

Case 13:
 A ¼ 0; B ¼ 0; C ¼ 1; D ¼ 1; Output=1,

Case 14:
 A ¼ 1; B ¼ 0; C ¼ 1; D ¼ 1; Output=1,

Case 15:
 A ¼ 0; B ¼ 1; C ¼ 1; D ¼ 1; Output=1,

Case 16:
 A ¼ 1; B ¼ 1; C ¼ 1; D ¼ 1; Output=1.
Because of a present output, case 16 can be eliminated
because it is a superset of cases 12–15, case 15 can be
eliminated because it is a superset of case 13, case 14 can
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be eliminated because it is a superset of case 13, case 12
can be eliminated because it is a superset of case 4, and
case 8 can be eliminated because it is a superset of case 4.
With a not-present output, case 1 can be eliminated
because it is a subset of cases 2, 3, 5, 6, 7, 9, 10 and 11,
case 2 can be eliminated because it is a subset of cases 6
and 10, case 3 can be eliminated because it is a subset of
cases 7 and 11, case 5 can be eliminated because it is a
subset of cases 6 and 7, and case 9 can be eliminated
because it is a subset of cases 10 and 11. This leaves six
test cases: 4, 6, 7, 10, 11, and 13.
3. Discussion

Here we relate our work to other algorithms for
network assembly, to issues in computer science, and to
potential applications.

3.1. Comparison to other algorithms for network

assembly

This paper presents an algorithm that gives a
sequence of networks meeting a given constraint. The
inputs to the algorithm are the constraint and a list of
allowed reactions. The output is a sequence of canonical
nets—sets of reactions. In principle our approach can be
extended to include more constraints, such as requiring
or forbidding the usage of certain molecules. The
algorithm produces networks in order of increasing size
(number of reactions used counted with multiplicity).
The starting point for development of the Netscan

algorithm was the method we call Mavro, which was
presented by Mavrovouniotis et al. (1990). In each
iteration Mavro augments partial pathways by linking
the reactions that produce or consume a chosen
molecule, using all possible combinations of reactions.
The molecule chosen is the one involved in the fewest
partial pathways. Because Mavro may begin with
molecules that do not necessarily participate in partial
pathways that produce the outputs or consume the
inputs given in the constraint, it is more productive to
choose at each iteration a molecule that helps to
produce the overall outputs. Thus, a natural variant
on Mavro is to begin with the overall outputs and work
backwards to the overall inputs, somewhat as Netscan
does. This tends to give networks in order of increasing
size but this is not guaranteed. Also, this ‘‘backwards
Mavro’’ does generate networks efficiently, because it
processes all molecules a fixed number of reaction steps
from the overall outputs. This processing is backward to
the overall inputs initially but in later iterations can
include output edges from reactions whose products link
forward also.
The Netscan algorithm represents each partial path-

way as a searchset, as defined in Section 2.2. At each
iteration Netscan processes the searchset that has the
smallest number of included reactions. Within that
node, it processes those molecules that lead to the fewest
new nodes. However, Netscan only searches backward
to the overall inputs. Consequently, a reaction that
produces one molecule needed for the overall outputs
and one molecule that is not the input to any other
reaction may be included in a network. That is, the
networks generated are not in general complete: a
constraint need not be satisfied stoichiometrically. Not
all molecules produced are necessarily consumed.
There are three consequences of this approach. First

is that the networks are produced in order of size
because of the search algorithm. Second is that the
stoichiometrically complete nets will be a proper subset
of the canonical nets Netscan generates. Indeed, if a
molecule is produced but not consumed, but can be
consumed by the addition of further reactions that
bigger network will appear later in the Netscan output.
We note that nets with molecules that are consumed but
not produced are not included in the output. Third, by
searching backwards only, Netscan avoids some of the
potential pitfalls of Mavro. That is, Mavro will search
forward from molecules that are produced but not yet
consumed to track where they go. By contrast, because
Netscan assembles networks from the overall outputs to
the overall inputs it diversifies partial pathways spar-
ingly in contrast to Mavro.
As Mavrovouniotis et al. (1990) emphasized, their

algorithm is complete; it generates all networks that
meet the constraint exactly, given a reaction list.
However, its algorithm incorporates all reactions that
produce each molecule and all reactions that consume it,
in all combinations, into partial pathways. Some of
these partial pathways may not include overall inputs or
outputs. Mavro generates all possible occurrences of
each molecule, at any position in any network. Like
Mavro, Netscan is complete in that it generates all
reaction sets that can satisfy a given set of constraints.
An important generic example is polymerization in

which the same reactions are used many times. That is, a
reaction can be reused if its inputs recur. In fact, the
recurrence may be associated with a futile cycle or with
the reoccurrence of the inputs in a novel context, or with
the reoccurrence of the inputs in the same context. The
synthesis of a protein is an example. At each position
where a given amino acid is to be added to the growing
polymer, the same reactions get re-used, because the same
codon reoccurs in different contexts. In a case like this
Netscan would generate the appropriate canonical nets
but post-processing would be necessary to count how
many times each reaction was used to make the protein.
Thus the above algorithms make different tradeoffs.

Mavro generates all networks exactly compatible with
the constraint, preserving the connectivity of reactions
in each network. To accomplish these aims the
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algorithms sacrifice speed and use extensive storage. By
contrast, Netscan sacrifices connectivity and may over-
generate nets for speed, size ordering, and reduced
storage. Consequently, Netscan should deal effectively
with much larger reaction lists than Mavro can.

3.2. Relations to issues in computer science

For computational biology and bioinformatics one
wants a method of network assembly that works for
hundreds or thousands of reactions. Assembly proceeds
stepwise. A measure of the difficulty of assembly is the
branching factor B; the expected number of ways an
output from one step can be connected to inputs for the
next step. The examples we have explored suggest that
finding all paths that use S steps to get from specified
inputs to outputs requires BS steps—network assembly
is exponential in S: That is, it may not be possible to
assemble the networks that meet a constraint with an
algorithm that is polynomial in S: If it is not possible,
network assembly is NP-hard. Below we argue that this
is the case, as Mavrovouniotis et al. (1990) concluded
for Mavro. We also discuss alternative algorithms and
scaling of the algorithm we used.

3.2.1. Network assembly is related to routing and

shortest-path problems

The problem of assembling reaction networks is
related to the problem of routing transmissions from
senders to receivers through a network. There, nodes
represent senders and receivers, and edges represent
routes of transmission. Many algorithms are available
for the routing problem if transmission through a node
obeys an OR function, with any input to the node
eliciting its output (Bertsekas and Gallager, 1992; Russel
and Norvig, 1995). However, in a typical molecular
reaction a conjunction of inputs determines the outputs;
such a node obeys an AND function. Other Boolean
functions are also possible.
Algorithms for finding the shortest path between two

nodes might be useful for assembling networks. This
seems unlikely. Standard shortest-path algorithms such
as the Dijkstra algorithm (Dijkstra, 1959) and the
Bellman–Ford algorithm (Bellman, 1958; Ford and
Fulkerson, 1962) determine the shortest path between
two nodes on a weighted undirected graph. After all
nodes are enumerated, these algorithms change vari-
ables associated with each node until a weighted path
length is calculated.
The impediment to using these algorithms for finding

the networks that meet a constraint, in order of
increasing size, is that the algorithms require enumera-
tion of all nodes. For a cycle, enumeration of repeated
traversals produces an infinite number of nodes and
arcs, so the algorithm would never terminate. In the
absence of cycles there will be finitely many nodes.
Indeed, there is a finite number of molecules and there
are finitely many reactions.
Thus, to list the networks that can satisfy a constraint

in order of increasing size, there are three problems to
overcome if one wants to modify standard shortest path
algorithms. First, one needs to enumerate the nodes, but
this must not be done by following connections because
there may be an infinite number of them. Instead, one
must generate the nodes by following all the paths,
almost certainly using a tree search. This suggests that a
search over paths is unavoidable. Second, a shortest-
path algorithm is particularly useful only for a weighted
network. (Reductions to unweighted networks achieved
by setting all weights to 1 loses the improvement in
the search achieved by having substantially different
weights.) Thus, using this approach in practice needs
more information or stronger assumptions than is
typically the case. Third, even if these impediments are
overcome, a shortest path algorithm will only find the
shortest path. Our task is to generate all paths, in order
of increasing size. A shortest-path algorithm would need
substantial modification to do this. The result would be
an algorithm combining a breadth-first search with a
shortest-path algorithm.

3.2.2. Network assembly is a generalization of the

minimum cover problem

Garey and Johnson (1979) defined the minimum
cover problem as follows. Suppose we have a set S and a
finite class of sets C ¼ fC1;y;CMg: Each Ci is a subset
of S:Given an integer K ; we can ask if there is a subclass
of C of size K with the union of those Ci’s, from
i ¼ 1;y;K ; containing S: The minimum cover problem
is known to be NP-hard.
To represent this problem as a special case of network

assembly, let S represent the set of outputs in a
constraint, and denote the cardinality of S by u: Choose
each element Ci in C to be the outputs of a reaction Ri:
Now, let each Ri convert the null element f into a subset
of S: There are 2u � 1 non-void subsets of S and so there
are 2u � 1 reactions Ri: An algorithm for network
assembly should output all sets of Ri’s that produce the
outputs in the constraint. This is a solution to the
minimum cover problem.
The problem of network assembly is NP-complete: since

the minimum cover problem is NP-hard, and it is a special
case of the problem of network assembly, the latter
problem must be NP-hard. An NP-hard problem is NP-
complete if one can test in polynomial time whether a
candidate solution solves the problem. This is so for
network assembly: given a set of reactions we can
represent each by a row containing 1’s for molecules
produced and �1’s for molecules consumed. Each column
represents a molecule, so verifying that each column has at
least one �1 and one 1 means we can form links to get the
overall outputs. This means the set of reactions is a
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solution. The test can be done in polynomial time—the
size of the problem is linear in the number of reactions and
in the number of outputs/inputs.
Thus network assembly is NP-complete. Its constraint

on the graph-theoretic connectivity of a set of reactions
generalizes the minimum cover problem’s constraint on
a union of sets.

3.2.3. Scaling

Although network assembly is NP complete, the
complexity of the algorithm used by Netscan is not
exponential with the total number of reactions but
rather with the number of reactions producing the same
molecule. Because many reactions in biology are quite
specific, the program may be useful in many cases, in
particular, if less than about 16 reactions produce any
one molecule. If so, tens of thousands of reactions can
be searched.
It is possible to estimate the complexity (in both

memory and execution time) by examining each
molecule and looking to see how many potential
reactions produce it and calculating a ‘‘branching
factor’’ of 2n � 1; where n is the number of reactions
producing the molecule. The overall complexity is
determined by multiplying all the branching factors
together and multiplying this product by the overall
number of reactions. In fact, before it begins its search,
Netscan performs exactly this calculation and prints out
the result as estimated execution time and memory
required. This lets the user know what to expect.
In addition, as noted, the program also attempts to

minimize complexity by performing a connectivity check
before the search begins to delete unnecessary (i.e. not
fully connected) reactions and molecules. It also
combines duplicate reactions that would otherwise
needlessly increase the complexity.

3.3. Some possible uses for the algorithm

As noted earlier, the procedure we have presented is
intended primarily for assembling regulatory networks,
such as signaling pathways and gene regulatory nets. As
such it neglects the stoichiometry of reactions, and it is
therefore more general than methods that require the
use of stoichiometry (e.g. Mavrovouniotis et al., 1990;
Mittenthal et al., 1998, 2001).
Contexts in which our program may be helpful

include the following. It can be used, in conjunction
with post-processing, to give a display of networks
corresponding to a database of reactions. EcoCyc
(www.ecocyc.org) demonstrated the efficiency of auto-
matically generating diagrams of metabolic pathways
from a database of reactions. The Netscan program
could also be useful in automating the calculation of
global topological properties of networks, such as the
number of interactions per molecule.
Our program can be used to help infer routes through
which one molecule can influence another, in wild-type
organisms or after alteration of a network through
mutation or pharmacological intervention. This may
have particular use in inferring gene regulatory nets
from DNA microarray data. An efficient method for
assembling networks from hundreds or thousands of
reactions would be a significant step toward a program
that generates an exhaustive listing of possible con-
sequences of a given perturbation, such as inhibition of
the activity of a protein kinase.
The program could also be used in assembling

networks during an evolutionary computation. In such
a computation a population of model cells undergoes
iterative mutation and selection, with the aim of
evolving cells that have higher fitness; fitness is specified
according to a selection criterion. Each cell contains a
set of reactions. In each iteration the reaction set in one
or more cells is mutated. The networks of reactions that
determine the fitness of a mutated cell must be
assembled from its altered reaction set. If the fitness
depends on the kinetic parameters of a network as well
as its topology, the automatic generation of nets that
can satisfy an input-output constraint is desirable
because such a procedure eliminates networks that
cannot meet the constraint before optimization of
kinetic parameters is attempted. This separation of
topological and dynamical evaluation has the potential
to accelerate evolutionary computation significantly by
reducing the number of networks to be considered.
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Appendix A. A Netscan example

Here we examine a signaling network that computes
AND from its inputs. Specifically, we use Netscan to
assemble networks in which a conjunction of inputs
determines the activity of a protein. Schmelzle and Hall
(2000) reviewed studies of the target of rapamycin
(TOR) network of reactions in yeast. They related it to
the mammalian TOR (mTOR) pathway, which stimu-
lates both translation and transcription in response to
the presence of amino acids and growth factors. Here,
we limit our attention to the part of the mTOR network
used for translation. When ligand L binds to receptor R

http://www.ecocyc.org
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and amino acids are present, translation processes
denoted translation are activated to translation�.
(An asterisk denotes activation.) Thus our constraint is
L þ R þ amino acdisbtranslation�; it is of the form A

AND BbC: If we write down the reactions used in
Schmelzle and Hall (2000) and indicate which molecules
are always present for use we have the following list.
Rx1
 L þ R-L:R;

Rx2
 PI3K-PI3K�|L:R,

Rx3
 PDK1-PDK1�|PI3K�,

Rx4
 PKB-PKB�|PI3K�+PDK1�,

Rx5
 X-X�jPKB�;

Rx6
 mTOR-mTOR�|amino acids,

Rx7
 p70s6k-p70s6k�|mTOR�+PDK1�,

Rx8
 S6-S6�|p70s6k�,

Rx9
 4E-BP1:eIF4E-4E-BP1+eIF4E�|X�+mTOR�,

Rx10
 translation-translation�|eIF4E�+S6�.
Here, we assume PI3K ; PDK1; PKB; X ; amino acids,
mTOR; p70s6K ; S6; 4EBP1:eIF4E, and translation are
always present. It can be seen that Rx9 is a disinhibition
reaction and X is a placeholder for an uncharacterized
molecule. Using this reaction list as its input, Netscan
gives the diagram in Schmelzle and Hall (2000, Fig. 3).
This solution is in fact the only one. However, we can
make the problem more general and interesting by
modifying it to search for alternatives that might be
biochemically plausible. This modification might corre-
spond to a search among related networks to see if
the existing network is optimal. It might correspond
to efforts to uncover the biochemical correlates of X

and X�:
Consider the following abstract extension based on

the mTOR network. It continues to have a constraint
requiring three inputs, but it includes a recurrence loop
(through reactions 6, 10, 15, and 19 below), and several
false paths have been added by adding imaginary
reactions and molecules. The network of reactions is
summarized graphically in Fig. 1. Here is the reaction
list that generated this figure. Note that we include
molecules that are freely available by writing them as
PRESENT.

R1 A þ B-C þ II :

Here, A and B correspond to the ligand (L) and its
receptor (R); C is the complex they form and II is
imaginary.

R2 II-JJ:

This is an imaginary reaction.

R3 N þ P1-E þ EEjC;

PRESENT P1:

This is a combination of several early reactions in the
mTOR network: N corresponds to mTOR�; E corre-
sponds to PI3K�; EE corresponds to PDK1�; and P1
represents a combination of PI3K and PDK1:

R4 QQ-N þ NN :

With R24 below, this is an artificial inflation of
mTOR-mTOR�jamino acids; N corresponds to
mTOR� and NN is imaginary.

R5 P2-I þ PPjE;

PRESENT P2:

Here, E corresponds to PI3K�; P2 corresponds to
PKB; and I corresponds to PKB�; while PP is imaginary
and PDK1� is ignored on the left-hand side.

R6 EE þ X-G þ GG:

Here, EE corresponds to PDK1�; while X ; G and GG

are imaginary. With R10 this gives P corresponding to
p70s6k�.

R7 PP-Z;

R8 P3-OOjPP;

PRESENT P3:

These two reactions, R7 and R8; are imaginary.

R9 I-K :

Here, I corresponds to PKB� and K corresponds to
X�; with X in the mTOR network not represented.

R10 G þ GG þ N-P:

Here, G and GG are imaginary, and N corresponds
to mTOR�: With R4 we have P corresponding to
p70s6k�.

R11 P-HH þ LL;

R12 Z-BBjAA;

R13 AA þ OO-CC;

R14 P4-FF jOO;

PRESENT P4:

These four reactions are imaginary.

R15 P5-R þ MM jP;

PRESENT P5:

Here, P corresponds to p70s6k�, P5 corresponds to
S6; and R corresponds to S6�, with MM imaginary.

R16 BB-DD;

R17 CC-DD;

R18 P6-DDjKK ;

PRESENT P6;

R19 P7-X jMM;

PRESENT P7;

R20 DD-U :

Reactions R16–R20 are imaginary.

R21 K þ N-T þ U :
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Fig. 1. The connectivity of the artificially extended mTOR network from Appendix A is shown. Note that some molecules, such as P1–P7; that are
specified as always PRESENT are not shown. Also, molecules used as catalysts are shown as inputs even though they are not consumed.
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Here, K corresponds to X�; N corresponds to
mTOR�; T corresponds to 4EBP1, and U corresponds
to eIF4E�.

R22 R þ U-W :

Here, R corresponds to S6�, U corresponds to
eIF4E�, and W corresponds to translation.

R23 KK-R:

This reaction is imaginary.

R24 L-QQ:

With R4; this is an imaginary extension of
mTOR-mTOR�jamino acids.
In our more abstract notation the constraint is

A þ B þ LbW :

Netscan finds no solution because the recurrence
prevents the required outputs from being produced. If
the recurrence is satisfied by adding the line PRESENT
MM ; Netscan gives the single solution

R1;R3;R4;R5;R6;R9;R10;R15;R19;R21;R22;R24:

If PRESENT AA is added, Netscan gives seven
solutions:
R1,R3,R4,R5,R6,R9,R10,R15,R19,R21,R22,R24,
R1,R3,R4,R5,R6,R7,R10,R12,R15,R16,R19,

R20,R22,R24,
R1,R3,R4,R5,R6,R8,R10,R13,R15,R17,R19,

R20,R22,R24,
R1,R3,R4,R5,R6,R7,R9,R10,R12,R15,R16,

R19,R20,R21,R22,R24,
R1,R3,R4,R5,R6,R8,R9,R10,R13,R15,R17,

R19,R20,R21,R22,R24,
R1,R3,R4,R5,R6,R7,R8,R10,R12,R13,R15,

R16,R17,R19,R20,R22,R24,

R1,R3,R4,R5,R6,R7,R8,R9,R10,R12,R13,
R15,R16,R17,R19,R20,R21,R22,R24.
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If PRESENT AA is deleted and the constraint is
changed to

A þ B þ L þ AAbW :

Netscan reports three solutions:
R1,R3,R4,R5,R6,R7,R10,R12,R15,R16,R19,
R20,R22,R24,

R1,R3,R4,R5,R6,R8,R10,R13,R15,R17,R19,
R20,R22,R24,

R1,R3,R4,R5,R6,R7,R8,R10,R12,R13,R15,
R16,R17,R19,R20,R22,R24.
In this way one can generate a class of networks
within which one can evaluate the comparative perfor-
mance of a specified network.
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