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1. Introduction

The Shannon mutual information (SMI) was derived in Shannon (1948a), see
also Shannon (1948b), as a rate of information transmission across an information-
theoretic channel, that is, the electrical engineer’s analog of a likelihood. For-
mally, the SMI for a random variable X distributed as Pθ with density pθ and
equipped with the prior density Π is

I(X | Π) =
∫

Π(θ)D(Pθ‖PX)dθ,

where D(·‖·) is the relative entropy or Kullback-Leibler number

D(F‖G) =
∫
f(x) log

f(x)
g(x)

dν(x)

and PX is the marginal for X. Here, f and g are densities for distributions F
and G with respect to a common dominating measure ν (suppressed in the nota-
tion). The interpretation is that someone draws a value of θ according to Π and
transmits it over the channel defined by the likelihood so the receiver receives
and outcome of X with conditional density of p(x|θ). The mutual information is
then a transmission rate, in bits per symbol. So, the fastest information trans-
mission will occur for the data source Π that maximizes the mutual information.
The supremal transmission rate, over Π, is the capacity of the channel. In ad-
dition, if the relative entropy is regarded as a redundancy in noiseless source
coding, i.e., it is the extra bits sent beyond what optimal coding would require,
the mutual information is the Bayes redundancy and maximizing it gives the
maximin redundancy.

In statistics, the widespread use of the SMI began with Lindley (1956). Since
then, the SMI as a statistical quantity has been regarded as a measure of de-
pendence between a parameter and data, a measure of distance between dis-
tributions, a mode of convergence, a measure of “information” in a data set,
and as a sort of average learning rate (with respect to n). In fact, these various
interpretations are much at one with Shannon’s original communications theory
interpretation.
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The seminal contribution of Bernardo (1979) was to recognize that the ca-
pacity of a channel, that is, its maximal SMI, had an important interpretation
in Bayesian statistics. The capacity of a channel represents the fastest learning
rate a statistician could achieve on average from a fixed likelihood and that this
could be effected by finding the capacity achieving source distribution, which
he termed a reference prior. In fact, prior to Bernardo (1979), Ibragimov and
Hasminsky (1973) established that Jeffreys’ prior is the reference prior in an
asymptotic sense (in the absence of nuisance parameters) without using the
term reference prior; see also Clarke and Barron (1994) for a modern formula-
tion. The technique of their proof rested on posterior normality.

Because of its desirable properties, the concept of reference priors has re-
ceived extensive development, especially in a series of papers by Berger and
Bernardo and their collaborators such as Berger and Bernardo (1992b), Berger
and Bernardo (1992a) and Berger and Bernardo (1991). The paper Berger and
Bernardo (1989) deserves special mention because it extended the concept of
reference priors to include nuisance parameter cases. The derivation of their
new reference prior was not given explicitly but probably relied on a calculus of
variations argument applied to a heuristic asymptotic expansion. Later, Ghosh
and Mukerjee (1992) presented an argument on the basis of a formal asymptotic
expansion. Moreover, in the recent paper, Berger et al. (2009) the notion of a
reference prior has been formalized.

From this overall body work, it can be surmised that the usual electrical
engineering treatment of information concepts which mostly, but not entirely,
uses discrete random variables is less appropriate in statistics where continuous
variables are common. Essentially, this meant that identifying reference priors
had to be done asymptotically in the sample size n, since finite n optimizations
give discrete reference priors. However, see Zhang (1994) for a convergence result
that applies to the case in Berger et al. (1991).

Three important contributions that largely completed the theoretical treat-
ment of reference priors for finite dimensions and led to the present work are
the following. Let X be p dimensional and have a distribution controlled by a
parameter θ. Write Xn = (X1, . . . , Xn) to mean n independent and identical
(IID) outcomes of X and let Π(θ|Xn) be posterior density corresponding to the
prior Π. Then the SMI is given by

I(Xn) = I(Xn | Π) =
∫

Π(θ | xn)mn(xn) log
Π(θ | xn)

Π(θ)
dθdνn(xn),

where mn is the mixture of the n-fold product of f(·|θ)s with respect to Π.
Understanding the asymptotics of I(Xn) as n increases proceeded from Ghosh
and Mukerjee (1992) to Sun and Berger (1998) who further developed the con-
ditional mutual information given a nuisance parameter ψ and then to Clarke
and Yuan (2004) who handled the general case of I(Tn|Sn, ψ), in which a con-
ditioning statistic Sn (over which the integration is done) as well as a nuisance
parameter value ψ are present. The work Berger et al. (2009) extended the class
of priors over which the asymptotic optimization had been done in earlier cases.
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This tour-de-force showed that the previous restrictions on the prior and like-
lihood were convenient but not necessary. The successful extension of reference
prior concepts to distances other than the relative entropy was done for the
chi-squared distance in Clarke and Sun (1997) and completed in Ghosh et al.
(2010). Once these results were available, the major outstanding conceptual is-
sues for reference priors for finite dimensional parameters with independent data
were largely resolved. Admittedly, there are gaps such as dealing with nuisance
parameters outside the relative entropy distance definition, but it is not clear
how extensively useful this would be. Aside from the case of dependent data,
which is still being studied, the frontier for reference priors has shifted to high
dimensional settings.

Reference priors, or more generally objective priors, beyond the finite di-
mensional case, have received little attention despite the popularity of Ghosh
and Ramamoorthi (2003) and the rapid development of nonparametric Bayesian
methods that ensued. Apart from the generic recommendation to use a nonin-
formative base measure in a Dirichlet process prior, the main contribution to
objective prior selection in the nonparametric case seems to be Ghosal et al.
(1997). There, a sequence of uniform priors on carefully selected finite subsets
of a class of distributions was proposed. It was shown that when this sequence
has a weak limit it can correspond to a uniform distribution and reduces to
the Jeffreys prior in regular parametric settings. A variant on this construction
formed by taking a convex combination of those uniform distributions leads to
consistent posterior even in the nonparametric setting. The posterior usually
converges at the optimal rate; see Ghosal et al. (2000).

The present paper is between the finite dimensional setting that has been
well studied and the purely nonparametric approach just described. That is, we
find rates of increase on the number of parameters p in terms of n so that at
each stage, Jeffreys’ prior is the reference prior in an asymptotic sense and the
sequence of posteriors formed from these priors will be asymptotically normal.

The connection between posterior normality and reference priors has been re-
cognized since Bernardo (1979). This was used implicitly in Berger and Bernardo
(1989) and explicitly in Clarke and Barron (1990). Indeed, it is easy to see that
asymptotic normality of the posterior should be equivalent to the determination
of the reference prior under reasonable conditions such as the parameter having
fixed finite dimension, the likelihood satisfying smoothness assumptions, and
the mode of convergence being strong enough, that is, essentially equivalent to
convergence in the sense of the integrated Kullback-Leibler divergence.

As in the fixed dimensional case, the root of the asymptotic expansion of
the SMI lies in posterior asymptotic normality in the L1-sense. This is possible
because working with the local parameter allows explicit bounds for the error
in approximating a posterior density by its limiting normal form under suitable
uniform integrability conditions. The study of posterior normality in increasing p
setting was pioneered by Ghosal (2000); see also Ghosal (1997), Ghosal (1999),
and Boucheron and Gassiat (2009). However, the approach in Ghosal (2000)
does not give an estimate of the probability of the set W c = W c

n on which the
L1-distance between a posterior and its limiting normal may fail to be small;
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Ghosal (2000) only implies that the probability of W c converges to zero. In order
to be able to use the approximate normality in the L1-sense to derive bounds
for the expected Kullback-Leibler divergence, we need an explicit bound on the
probability of the setW c. Essentially, we construct a setW with high probability
on which the L1-distance between the posterior and its approximating normal
density is small.

Proofs of our results on asymptotic normality in the L1-sense are patterned
after those of Ghosal (2000), but there are important technical differences. We
use a different decomposition of the integrals into central and tail regions as well
as higher moments to bound probabilities. To gain the necessary control on the
probability of W c, we reduce W c further, but then to make the L1-distance small
on the larger W , we must impose stronger conditions. Although most proofs in
the section on asymptotic normality use ideas already in Ghosal (2000), for the
sake of self-containedness and transparency, we shall give complete proofs of
most of the results on asymptotic normality in the L1-sense. This leads to a
stronger growth restriction on the dimension p as the sample size n grows.

Once asymptotic normality is obtained, we use arguments similar to those in
Clarke and Barron (1990) to make the transition from L1-distance to the ex-
pected Kullback-Leibler divergence. The resulting analysis gives an asymptotic
expansion of the SMI as the sum of a dominant term free of the prior, a term
that depends on the prior but does not grow with n, and another small error
term. The representation is virtually identical with that in Clarke and Barron
(1990), except that p can now grow to infinity as n does. Optimizing the second
term over the prior establishes Jeffreys’ prior as the reference prior.

It will be seen that the growth restriction of the rate p = pn depends on
the specific model under consideration. In the easiest case, all the random vari-
ables X1, . . . , Xp are independent univariate N(θi, 1)’s for i = 1, . . . , n, and
the Jeffreys prior is uniform on any compact set. Then, it is enough to choose
p = O(n1/3−η) for any η > 0. By contrast, when the Xi’s are multinomial, it will
be seen that a much slower growth rate of p with n, namely p = O(n1/9−η), ap-
pears to be required for the reference prior to exist and give posterior normality.
In our third example, a Dirichlet distribution, we find order p = O(n1/6−η).

We do not know if these rates are the best possible, but it appears that some
restrictions like these on the growth rate of p are essential. In the next section
we define our setting and notation. Then, Section 3 states our main results
for identifying reference priors when nuisance parameters are not present and
when they are. Section 4 presents three examples of our results, the normal, the
multinomial and the Dirichlet in which explicit rates on p can be given in terms
of n. Section 4 presents our three examples and Section 5 gives some concluding
remarks on prior selection. Section 5 discusses extensions of the present results
and their implications for prior selection in high dimensions. Appendix A states
and proves an asymptotic normality theorem essential to the identification of
the reference priors in Section 3 and Appendix B provides some details of proof
of the results in Section 3. For convenience, Appendix C gathers together some
simple lemmas we use in the various derivations.

We use the following symbols throughout this paper: “.” means inequal-
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ity “up to a constant multiple”; Ip is the identity matrix of order p; and
xT = (x1, . . . , xp) (respectively, AT ) stands for the transpose of a vector x (re-
spectively, matrix A = ((aij)) for i, j = 1, . . . , p). The notation ‖ · ‖ denotes the
Euclidean norm for vectors as well as the operator norm for matrices, that is,
‖A‖ = sup{‖Ax‖ : ‖x‖ ≤ 1}. We use φp(·|µ,Σ) to mean the p-dimensional
normal density with mean vector µ and dispersion matrix Σ = ((σij)) for
i, j = 1, . . . , p, and an = O(bn) (respectively, an = o(bn)) means that an/bn
is bounded (respectively, an/bn → 0). We denote a generic constant by C, not
necessarily the same from occurrence to occurrence.

2. Setting and assumptions

Let Xn = (X1, X2, . . . , Xn) IID∼ f(x|θ), θ ∈ Θ ⊂ Rp and suppose that the
dimension of the Xi’s is p = pn → ∞, where densities are with respect to a
σ-finite measure ν on Rp. Each distinct value of p is regarded as a stage in the
overall structure and there is no necessary linkage from one stage to the next
except that we assume that there is a true value θ0 uniformly in the interior of
the p-dimensional parameter spaces, i.e., there exists an ε0 > 0 (fixed) such that
at the pth stage {θ : ‖θ− θ0‖ < ε0} ⊂ Θ. This means that the dimension of the
true parameter is increasing but that the extra entries thereby introduced as p
increases do not move the true value outside the interior of the corresponding
parameter space.

We restrict to the case of natural exponential families given by f(x|θ) =
exp[xT θ − ψ(θ)]. The true mean is therefore µ = Eθ0(X) = ψ′(θ0) ∈ Rp and
the p × p Fisher information matrix is given by F = ψ′′(θ0). The maximum
likelihood estimator (MLE) θ̂ satisfies ψ′(θ̂) = X̄ = n−1

∑n
i=1Xi. We use Pθ0

to denote the true distribution of the data, where dependence on n and p is
suppressed in the notation.

Let J be any square root of F , that is, JJT = F . Then, ‖J‖ =
√
‖F‖ and

‖J−1‖ =
√
‖F−1‖. Note that ‖F‖ = max(λ1, . . . , λd), the largest eigenvalue of

‖F‖, and ‖F−1‖ = max(λ−1
1 , . . . , λ−1

d ).
We define the local parameter u =

√
nJT (θ − θ0). Thus θ = θ0 + n−1/2Hu,

where H = (JT )−1, and hence

‖u‖2 = n(θ − θ0)TJJT (θ − θ0) = n(θ − θ0)TF (θ − θ0).

One consequence is that ‖θ − θ0‖ ≤ n−1/2
√
‖F−1‖‖u‖.

Define ∆n =
√
nJ−1(X̄ − µ), so that X̄ = µ + n−1/2J∆n. Note E(∆n) = 0

and that

E(∆n∆T
n ) = nJ−1E

[
(X̄ − µ)(X̄ − µ)T

]
H = nJ−1F

n
H = Ip. (2.1)

In particular, this gives

E‖∆n‖2 = E(tr(∆n∆T
n )) = tr[E(∆n∆T

n )] = tr(Ip) = p. (2.2)
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The interplay between the parameterizations in terms of u and θ will be impor-
tant for obtaining bounds.

To state the quantities on which we will impose conditions, let X ∼ f(·|θ)
and V = J−1(X − µ). Let, V =

(
V1, . . . , Vp

)′ and for fixed δ > 0 we can define

Bn = sup{Eθ0 | aTV |3: ‖a‖ = 1}, (2.3)

B′n = sup{Eθ | aTV |3: ‖a‖ = 1, ‖u‖ ≤ p(1+m)/2+δ}, (2.4)

B∗n = sup{Eθ | aTV |4: ‖a‖ = 1, ‖u‖ ≤ p(1+m)/2+δ}, (2.5)
Mr = max

1≤j≤p
Eθ0 | Vj |r, (2.6)

where m ≥ 0 is a constant related to the growth of Mr (see condition MCV4).
Note that the local restriction on the parameter space appears in (2.4) and (2.5)
so the expectation is indexed by the θ (which depends on u), not θ0.

Now, the main hypotheses can be stated in three classes. For any fixed M > 0,
assume the following two conditions hold uniformly for all θ0 with ‖θ0‖ ≤ M
(i.e., the implicit constants do not depend on θ0 as long as ‖θ0‖ ≤M).

First we require moment controls on V to control (2.3), (2.4), (2.5), and (2.6)
for r ≥ 1.

Conditions MCV: [Moment Controls on V ]

For some δ > 0, m ≥ 0,

(MCV1) Bnp
3(1+m)/2+3δ/

√
n→ 0,

(MCV2) B′np
(1+m)/2+δ/

√
n→ 0 ,

(MCV3) B∗np
2(1+m)+4δ/n→ 0,

(MCV4) M2r = O(pmr) for every integer r ≥ 1.

It will be seen in Section 4 that m = 0 will suffice for the normal and Dirichlet
examples whereas m = 1 seems to be needed for the multinomial example; the
role of m partly explains the difference in the rates ranging from n1/3 to n1/9.

Second, we must impose conditions on the prior density Π for θ.

Conditions PDB: [Prior Density Bounds]

The prior density Π satisfies

(PDB1) − log Π(θ0) = O(p log p),

(PDB2)
∣∣∣ log

Π(θ)
Π(θ0)

∣∣∣ ≤ Kn‖θ − θ0‖ for all ‖θ − θ0‖ ≤
√
‖F−1‖ p(1+m)/2+δ/

√
n,

where Kn is some constant, subject to some growth condition (see Condi-
tion (BF2) below).

Note that Conditions (PDB1) and (PDB2) ensure that Π(θ) remains bounded
below by e−cp log p for some c > 0, for all θ sufficiently close to θ0. It is not hard
to see that there are a large class of priors for which (PDB1) and (PDB2) are
satisfied. Indeed, suppose Π is an independence prior given by a product hj(θj)
where the log hj ’s satisfy uniform positivity condition at θ0, i.e., hj(θj,0) > ε and
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a uniform Lipschitz condition on a neighborhood of θ0, i.e., |hj(θj,0)−hj(θj)| ≤
L|θj,0 − θj |, then

− log Π(θ) = −
p∑
j=1

log hj(θj,0) ≤ −
p∑
j=1

log ε = O(p) (2.7)

ensuring (PDB1) and

| log Π(θ)− log Π(θ0)| ≤ L
p∑
j=1

|θj − θj,0| ≤ C
√
p‖θ − θ0‖ (2.8)

ensuring (PDB2) for Kn = O(
√
p) provided

√
‖F−1‖ p(1+m)/2+δ/

√
n→ 0.

Our third set of conditions control the growth of the norm of Fisher infor-
mation or its inverse, and also involve the Lipschitz constant Kn of log Π(θ)
defined in (PDB2) and moment bounds Bn and B∗n.

Conditions BF: [Bounds using F ]

For some α ≥ 0, δ > 0, at θ0 we have

(BF0) ‖F‖ = O(pα) and ‖F‖/n→ 0,
(BF1) log det(F ) = O(pα),
(BF2) Kn

√
‖F−1‖p(1+m)/2+δ/

√
n→ 0.

We further assume that log n = O(log p). If this fails, the setting is very
similar to fixed dimension, and results will go through by slight variation of the
arguments; see Ghosal (2000), pages 52–53, for more explanation.

We comment that (BF1) is essentially always satisfied. Indeed, if F is written
as the product of its eigenvalues, λj for j = 1, . . . , p, the geometric mean-
arithmetic mean inequality gives

(detF )1/p =

(
p∏
j=1

λj

)1/p

≤
∑p
j=1 λj

p
=

tr(F )
p

.

So, taking logarithms and rearranging terms gives

log detF ≤ p log
tr(F )
p

= O(p log p), (2.9)

provided the diagonal entries of F are uniformly bounded by a polynomial in
p. The same condition clearly implies ‖F‖ ≤ tr(F ) = O(pα). This occurs in
the normal, multinomial, and Dirichlet examples in Section 4. In addition, for
priors satisfying uniform positivity and Lipschitz conditions as above (so that
Kn = O(

√
p)), (BF2) is always satisfied for some rate.

Given Π, the posterior density of θ in an exponential family assumes the
convenient form

Πn(θ) ∝ Π(θ)
n∏
i=1

f(Xi; θ) = Π(θ) exp[n(X̄T θ − ψ(θ))].
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The mixture of densities over the whole parameter space, i.e., the marginal
density of Xn, will be denoted mn(·). That is,

mn(Xn) =
∫
p(Xn|θ)Π(θ)dθ

= n−p/2(det(F ))−1/2

∫
p(Xn|θ0 + n−1/2Hu)Π(θ0 + n−1/2Hu)du,

where the second expression follows from a change of variables.
By contrast, for examining local behavior, we define the local likelihood ratio

process, that is, the likelihood ratio in terms of the local parameter u, by

Zn(u) =
n∏
i=1

f(Xi|θ0 + n−1/2Hu)
f(xi; θ0)

=
exp[n(X̄T θ0 + X̄Tn−1/2Hu)− nψ(θ0 + n−1/2Hu)]

exp[nX̄T θ0 − nψ(θ0)]

= exp[
√
nX̄THu− n{ψ(θ0 + n−1/2Hu)− ψ(θ0)}]

= exp[
√
nuTJ−1X̄ − n{ψ(θ0 + n−1/2Hu)− ψ(θ0)}]. (2.10)

Consequently, the posterior density whose asymptotics we want to find, is given
in terms of u by

Π∗n(u) =
Π(θ0 + n−1/2Hu)Zn(u)∫

Π(θ0 + n−1/2Hw)Zn(w) dw
.

When no confusion will result, we drop the subscript n, writing only Π∗ for the
posterior and we use Π to denote both the prior probability and its density.

3. Statements of results

In this section, we state our three main results for the increasing p setting.
First, we give an asymptotic expression for the relative entropy between the
n-fold product of densities and their mixture distribution. From this we derive
a reference prior in the absence of nuisance parameters. Then, equipped with
these results we identify reference priors in the presence of nuisance parameters.

3.1. No nuisance parameters

In the absence of nuisance parameters, we can derive reference priors from an
asymptotic expression for the relative entropy. Our result is the following.

Theorem 3.1. Under Conditions (PDB1), (PDB2), (MCV1)–(MCV4), and
(BF1)–(BF2), the relative entropy between pθ0 and the mixture of density mn
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is given by

D(pnθ0‖mn) = Eθ0

[
log

p(Xn|θ0)
mn(Xn)

]
=
p

2
log

n

2π
− log

Π(θ0)
(det(F ))1/2

− p

2
+ o(1),

as n, p→∞, uniformly for all θ0 ∈ Θ such that ‖θ0‖ ≤M .

A sketch of the proof is given below; some details are relegated to Section 7.
To use Theorem 3.1, let Π be a prior density satisfying Conditions (PDB1)

and (PDB2) uniformly in θ0 and concentrated on {‖θ0‖ ≤M} ∩Θ. The SMI is
given by

I(Xn|Π) =
∫
D(pθ0‖mn)Π(θ0)dθ0 =

∫
D(Πn‖Π)m(Xn)dνn,

the expected Kullback-Leibler divergence between the posterior and the prior.
By the uniformity in Theorem 3.1, we obtain the following result.

Theorem 3.2. Assume that the conditions of Theorem 3.1 hold uniformly for
all θ0 ∈ Θ with ‖θ0‖ ≤M and that the support of Π is in {θ0| ‖θ0‖ ≤M}. Then
we have

I(Xn|Π) =
p

2
log

n

2πe
+
∫

Π(θ0) log

√
det(F (θ0))

Π(θ0)
dθ0 + o(1). (3.1)

Consequently, on {θ0| ‖θ0‖ ≤M}, Jeffreys’ prior,

Π(θ0) ∝
√

det(F (θ0)),

asymptotically maximizes the SMI.

The proof of Theorem 3.1 rests on the posterior normality established in
Appendix A as well as bounding the density ratio mn(Xn)

p(Xn|θ0) formally shown in
Appendix B. We begin our sketch of the proof of Theorem 3.1 by stating the
bounds for the density ratio. Taken together, these permit general upper and
lower bounds on the relative entropy between Pnθ and mn. Note that two aux-
iliary bounds λn and λ∗n appear in this result. They are formally defined in
Appendix A, Lemma 6.7 and in Corollary 6.2, respectively. Here, it is enough
to observe pλn → 0 and λ∗n → 0 as n→∞ in Pθ0-probability, see Lemma 6.8.

Lemma 3.3. Upper bound on mn(Xn)
p(Xn|θ0) : Assume Conditions (MCV1), (MCV3),

(BF2) and (PDB2). Then on W , we have the bound

mn(Xn)
p(Xn|θ0)

≤ (2π)p/2(1− λ∗n)−1 exp[Kn

√
‖F−1‖p

(1+m)/2+δ

√
n

]Π(θ0)n−p/2

× exp[
‖∆n‖2

2(1− 2λn)
](det(F ))−1/2(1− 2λn)−p/2.
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Lower bound on mn(Xn)
p(Xn|θ0) : Assume Conditions (MCV1) and (MCV3). Then

on W , we have the bound

mn(Xn)
p(Xn|θ0)

≥ exp[−Kn

√
‖F−1‖p

(1+m)/2+δ

√
n

]Π(θ0)n−p/2(det(F ))−1/2(2π)p/2

× exp [
‖∆n‖2

2(1 + 2λn)
](1 + 2λn)−p/2(1− e−c2p

1+m+2δ
).

Now, we provide a sketch of the proof of Theorem 3.1.

Sketch of proof of Theorem 3.1:

The strategy of the proof is to define an error expression

Rn = log
p(Xn|θ0)
mn(Xn)

− p

2
log

n

2π
+ log

Π(θ0)
(det(F ))1/2

+
‖∆n‖2

2

and show it goes to zero in L1. Then, the result will follow from the fact that
E(‖∆n‖2) = p.

To bound |Rn| on W , note that Lemma 3.3 may be written as

log
p(Xn|θ0)
mn(Xn)

≥ −Kn

√
‖F−1‖p

(1+m)/2+δ

√
n

− log(Π(θ0)) +
p

2
log

n

2π

+
p

2
log(1− 2λn) +

1
2

log det(F )− ‖∆n‖2

2(1− 2λn)
+ log(1− λ∗n);

log
p(Xn|θ0)
mn(Xn)

≤ Kn

√
‖F−1‖p

(1+m)/2+δ

√
n

− log Π(θ0) +
p

2
log

n

2π
+

1
2

log det(F )

+
p

2
log(1− 2λn)− log(1− e−cp

1+m+2δ
)− ‖∆n‖2

2(1 + 2λn)
.

Now, under the Conditions (MCV1)–(MCV4) and (BF1) and (BF2), restricting
to the set W gives the bound

|Rn| . Kn

√
‖F−1‖p

(1+m)/2+δ

√
n

+ | log(1− λ∗n)|+ p

2
| log(1− 2λn)|

+
p1+m+2δ

16
|(1− 2λn)−1 − 1|+ e−cp

1+m+2δ

. Kn

√
‖F−1‖p

(1+m)/2+δ

√
n

+ pλn + λ∗n + p1+m+2δλn + e−cp
1+m+2δ

. Kn

√
‖F−1‖p

(1+m)/2+δ

√
n

+
p3(1+m)/2+3δ

√
n

Bn +
p2+2m+4δ

n
B∗n, (3.2)

which goes to 0 as n→∞. Thus it remains to show that

Eθ0 |Rn| → 0, (3.3)

and that the convergence is uniform over θ0 ∈ Θ satisfying ‖θ0‖ ≤M .
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Given (3.2), to show (3.3), it suffices to show

Eθ0

{(
log+

p(Xn|θ0)
mn(Xn)

)
1W c

}
→ 0; (3.4)

Eθ0

{(
log−

p(Xn|θ0)
mn(Xn)

)
1W c

}
→ 0; (3.5){

p

2
log

n

2π
+ log

Π(θ0)√
det(F )

}
Pθ0(W c)→ 0; (3.6)

Eθ0
(
‖∆n‖2 · 1{‖∆n‖ > p(1+m)/2+δ/4}

)
→ 0, (3.7)

where 1A is the indicator function for the set A. These four convergences are
verified in Appendix B.

3.2. Nuisance parameters present

While it is often reasonable to use a reference prior for reference purposes, or
even directly as an objective prior, it is also common for nuisance parameters
to appear. This is particularly common in high dimensional parameters. Thus,
reference priors have been extensively studied in nuisance parameter contexts.
It will be seen below that our results extend readily to the setting of Berger and
Bernardo (1989), Ghosh and Mukerjee (1992), and Clarke and Yuan (2004).
For instance, in the case of a nuisance parameter ψ, the conditional mutual
information given a nuisance parameter ξ is

Iξ(Xn|Π) =
∫

Π(θ|ξ)D(Pnθ,ξ‖Pnξ )dθ (3.8)

and integrating over ξ gives the conditional SMI, where Pnξ =
∫
Pnθ,ξΠ(θ|ξ)dθ. If

ψ is fixed dimensional and varies over a compact set, it is enough to verify that
the expansion for the information inside the integral is uniform in ξ. If this is
done, then we obtain an analog to the prior proposed in Berger and Bernardo
(1989) and Ghosh and Mukerjee (1992).

The typical situation is that the limiting form in Theorem 3.2 is an improper
density. When Jeffreys’ prior is not proper, it is routinely truncated. In such
cases conditions like “maximizing mutual information” and “permissibility”, or
their increasing-dimensional analogs, must be imposed, see Berger et al. (2009).
A separate problem is that many inference settings have nuisance parameters.
That is, prior selection for the parameter of interest must be done conditionally
on the value of some other parameter, say ψ. However, the inferential goal is
not to estimate ψ, only θ. We are unconcerned about the value of ψ except that
it may affect our inferences on θ. The classic example of this is estimating a
normal mean without being concerned about the variance. When the variance
is unknown, the intervals from a tn−1-distribution for estimating θ are wider
than those from a N(θ, σ2

0) with σ0 known.
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To state the nuisance parameter setting formally, augment ξ to θ, where
p = pn = dim(θ) and q = qn = dim(ξ). That is, in principle, there may be
countably many nuisance parameters in the limit of large n. Assume that the
data remain IID and there are true values θ0 and ξ0 uniformly in the interior of
p+ q dimensional parameter spaces. That is, there is a fixed ε0 so that for any
stage p+q, {(θ, ξ) : ‖(θ, ξ)−(θ0, ξ0)‖ < ε0} ⊂ Θ×Ξ where Θ is the p-dimensional
parameter space for θ and Ξ is the q-dimensional nuisance parameter space for
ξ at the n-th stage. Now, the natural exponential family can be written as

f(x|θ, ξ) = exp[xT η(θ , ξ)− ψ(θ, ξ)],

where the natural parameter is η = (η1(θ1, ξ), . . . , ηp(θp, ξ)). That is, each com-
ponent of η consists of one of the θj ’s and possibly all the ξj ’s.

The notation from Section 2 carries over directly. We use Pθ0,ξ to denote the
true distribution of the data, where dependence on n, p, and q is suppressed in
the notation. Now, the true mean is p-dimensional and given by µ = Eθ0,ξ(X) =
ψ′(θ0, ξ) ∈ Rp and the p×p Fisher information matrix for the parameter θ at θ0 is
given by F1,1 = ψ′′(θ0, ξ), where the differentiation is with respect to θ only. The
maximum likelihood estimator (MLE) θ̂ satisfies ψ′(θ̂, ξ) = X̄ = n−1

∑n
i=1Xi if

ξ is known.
To state our next result, suppose F has been partitioned and write F1,1 to

mean the upper right p× p block of F . Suppose ξ is known and the dependence
of ψ on ξ is smooth, i.e., has continuous first and second derivatives neither
of which are zero on a neighborhood N(ζ) = Nξ(ζ) of radius ζ centered at ξ.
Also, assume that the three classes of hypotheses (MCV), (PDB), and (BF)
conditional on ξ hold. Then we get a conditional version of Theorem 3.2.

Theorem 3.4. Suppose that ξ is smooth and the uniform versions of the hy-
potheses of Theorem 3.2 are satisfied. Then, for each fixed ξ ∈ N(ζ), we have

Iξ(Xn|Π) =
p

2
log

n

2πe
+
∫

Π(θ|ξ) log

√
det(F1,1(θ, ξ))

Π(θ|ξ)
dθ + o(1),

and the error term is uniformly small for ξ ∈ N(ζ) as n increases.

Proof. This follows from verifying that the uniformized versions of the Lemmas
and Theorems continue to hold under the uniformized hypotheses.

Since the error term in Theorem 3.4 is uniformly small, it is natural to extract
a corollary by integrating. We have the following.

Corollary 3.5. Assume the hypotheses of Theorem 3.4 and that ξ has been
assigned a prior Π(ξ) on N(ζ). Then, the conditional SMI satisfies

I(Xn|Π) =
p

2
log

n

2πe
+
∫

Π(θ|ξ)Π(ξ) log

√
det(F1,1(θ, ξ))

Π(θ|ξ)
dθdξ + o(1). (3.9)

Thus, the prior

Π(θ|ξ) =

√
det(F1,1(θ, ξ))∫ √
det(F1,1(θ, ξ))dθ

(3.10)
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asymptotically maximizes the conditional SMI but the marginal prior for ξ is
unconstrained.

4. Examples

In this section we examine three cases in which p is increasing. We can verify
that our hypotheses are satisfied and therefore both the asymptotic normality
theorem and its consequences for reference priors hold.

4.1. Independent normal model

Consider n IID samples from a p dimensional normal model with mean θ =
(θ1, . . . , θp) and covariance matrix identity, that is, the components of these
variables are also independent. Assume also that a nonsingular prior density Π
for θ. First we verify Conditions (PDB), (MCV) and (BF) for this case. Then,
we see that if p = O(n1/3−η) for some η > 0, the conclusion of Theorem 3.2
holds, and hence Jeffreys’ prior, which is the uniform prior on every compact
rectangle, is the reference prior.

To begin, observe that Bn = O(1), B′n = O(1) and B∗n = O(1) because
they are constants. Also, it is easy to see that ‖F‖ = O(1), ‖F−1‖ = O(1) and
tr(F ) = p. Note that (PDB1) and (PDB2) are satisfied for any well-behaved
product-type prior, in particular the uniform, which is Jeffreys’ prior in this
case.

Observe that M1/r
2r = O(1), so m = 0. Now, it is easy to see that among

(MCV1)–(MCV3), the most stringent condition comes from (MCV1) which asks
for p3(1+0)/2+3δ/

√
n → 0 for some δ > 0. Thus the requirement holds if p =

O(n1/3−η) for some η > 0.
It is easy to see that (BF1) (for α = 0) is satisfied by the identity covariance

matrix. Condition (BF2) is now equivalent to requiring
√
p
√
p p(1+0)/2+δ/

√
n→

0, which is satisfied when p = O(n1/3−η). Thus, Theorems 6.1, 3.1 and 3.2 hold
whenever p = O(n1/3−η) for some η > 0.

In this example, it is possible to derive a similar expansion under much
weaker growth restriction p/n → 0 by direct computation, provided that we
use an independence prior for the components of θ. In this case, the poste-
rior is again of product form, so the expected Kullback-Leibler divergence is
the sum of Kullback-Leibler divergence for each component. Individually, the
Kullback-Leibler divergence between the posterior and the corresponding nor-
mal approximation decays like the square of the Hellinger distance, that is as
n−1. As there are p components and the Kullback-Leibler divergence is additive
in the components, the overall Kullback-Leibler divergence of the product pos-
terior density to the appropriate product normal density decays like p/n→ 0.

Indeed, to see why (3.1) in Theorem 3.2 holds, let θ = θ0 + u/
√
n and write

D(Π∗||Π) = D(Π∗||φ) +
∫
np/2Π∗(θ0 + u/

√
n) log

φ(u)
np/2Π(θ0 + u/

√
n)
du.
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By asymptotic normality (see Appendix A), the first term is o(1) a.s. for p/n→
0, so it suffices to show that the expectation of the second term with respect to
the marginal distribution gives the first two terms of (3.1). Note that

log
φ(u)

np/2Π(θ0 + u/
√
n)

=
p

2
log 2π − ‖u‖

2

2
− p

2
log n− log Π(θ0 +

u√
n

).

Since E(u2
i |Xi,1, . . . , Xi,n) → 1 in L1, the claim follows by integration with

respect to Π∗ first and then by integrating with respect to the marginal of X.
Thus the Jeffreys prior is asymptotically entropy maximizing among all product
form priors only under the mild restriction that p/n → 0. Note that, Jeffreys’
prior, being the uniform distribution, can be regarded as a product of p constant
functions of the components θj of θ for j = 1, . . . , p.

Next, to illustrate Corollary 3.5, consider n IID samples from a p-dimensional
normal with mean θ = (θ1, . . . , θp) and covariance matrix σ2Ip, the p×p diagonal
matrix with nonzero entries σ2 unknown. Treating σ as a nuisance parameter,
and the θi = µ/σ2, for i = 1, . . . , p, as the parameters of interest, the three
classes of conditions can be verified conditionally on a value of σ in much the
same way as in the absence of nuisance parameters. Indeed, it will be apparent
that the most stringent condition comes from (MCV1), so our main results will
hold when p = O(n1/3−η) for some η > 0.

To see this, start by fixing a value of σ. Observe that the (p+1)×(p+1) Fisher
information matrix as a function of (θ, σ2) is F = diag(σ−2, . . . , σ−2, 2σ−2). So,
the Fisher information matrix for θ is the p×pmatrix F1,1 = diag(σ−2, . . . , σ−2) =
σ−2Ip. Now, J = σ−1Ip and V = J−1(X − θ0) ∼ N(0, Ip). Now, conditional on
σ, Bn = O(1), B′n = O(1) and B∗n = O(1), the same rates as in the absence of
a nuisance parameter, so (MCV1)–(MCV4), conditional on σ, are satisfied.

Note that for each fixed σ, ‖F1,1‖ = O(1), ‖F−1
1,1 ‖ = O(1) and tr(F1,1) =

O(p). So, conditions (PDB1) and (PDB2) are unchanged apart from condition-
ing, i.e., by replacing Π(θ) with Π(θ|σ). So, Kn = O(

√
p) for each fixed σ as

before and Kn = Kn(σ) is continuous as a function of σ. Thus, (PDB1) and
(PDB2) are satisfied.

For the third set of conditions, it can be seen that (BF1) is satisfied for
α = 1 since det(F1,1) = σ−2p and (BF2) is satisfied as in the case when nuisance
parameters are not present.

Now, conditional versions (on σ) of Theorems 6.1, 3.1 and 3.2 hold when-
ever p = O(n1/3−η) for some η > 0. In particular, Theorem 3.4 holds and since
conditions (MCV), (PDB), and (BF) hold uniformly for compact sets for which
σ > 0, Corollary 3.5 holds giving that

√
det(F1,1) ∝ σ−p is the conditional

reference prior. It is seen that this is improper and independent of θ. Indeed,
the analysis extends to the case that each of the p components are indepen-
dent k-dimensional normal random variables all have the same variance matrix
Σ(ζ) regarded as a nuisance parameter provided Σ varies over a compact set
of non-singular matrices smoothly parametrized (with non-zero derivative) by
ζ = (ζ1, . . . , ζq) for some fixed q and k is fixed as well. If q increases, it is not
clear that Theorems 6.1, 3.1, 3.2, 3.4 and Corollary 3.5 hold.
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4.2. Multinomial model

Consider a multinomial distribution with (p+ 1) cells. The distribution is char-
acterized by the probability vector π = (π1, . . . , πp) in which P (cell j) = πj for
j = 1, . . . , p, and the probability of the zeroth cell is π0 = 1 −

∑p
j=1 πj . The

multinomial is an exponential family which has p natural parameters given by
θj = log(πj/π0). This transformation corresponds to πj = eθj/(1 +

∑p
j=1 e

θj )
for j = 1, . . . , p, and π0 = 1/(1+

∑p
j=1 e

θj ). It will be seen next that it is enough
to require that p = O(n1/9−η) for some η > 0 for Theorem 6.1 to hold and for
Theorem 3.2 to show that Jeffreys’ prior is the reference prior.

To proceed, we verify that the (BF) conditions are satisfied. Suppose for
all j = 1, . . . , p, |θj | ≤ M for some bound M > 0. Essentially, this means
that all πj ’s are O(p−1). It can be verified that F = D − ππT , where D =
diag(π1, . . . , πp). Using standard arguments in matrix algebra and induction on
p, it can be shown that det(F ) =

∏p
j=0 πj . To transform this back into the

natural parameters, recall the formula

Fθ(θ) = UTFπ(π(θ))U

where Fθ is the Fisher information in the θj parameters, Fπ is the Fisher infor-
mation in the πj parameters, and U is the matrix with (i, j) entries

uij =
∂πi
∂θj

(θ) =

{
πiπj , if i 6= j,
πj(1− πj), if i = j,

(4.1)

that is, U = UT = Fπ(π(θ)). So, the log determinant of Fθ is

log detFθ(θ) = log
(
Πp
j=0πj(θ)

)3 (4.2)

=
p∑
j=1

3θj − 3(p+ 1) log(1 +
p∑
j=1

eθj ).

So, for |θj | ≤ M , (BF1) is satisfied for α = 1. This is slightly stronger than
applying (2.9).

For (BF2), we can take Kn = O(p1/2) because (4.2) is a product form
prior (in θ) with uniform positivity and as used in (2.7) and (2.8). Now, to
get the rate from condition (BF2) we use part A of Lemma 8.1 to get that
F−1 = D−1 +(1−π′D−1π)−111T . (Note that the denominator is 1−πTD−1π =
1−
∑p
j=1 πj = π0.) In both the π parametrization and the natural θ parametriza-

tion, ‖F−1‖ ≤ tr(F−1) = O(p2), so
√
‖F−1‖ = O(p). This bound is actually

sharp. For instance, when θ = 0, i.e., πj = 1/(1 + p) for all j = 0, . . . , p, it can
be verified that the largest eigenvalue of F−1 is O(p2). It will be seen in the
(MCV) conditions that, for the multinomial, we can set m = 1. Thus, (BF2)
will be satisfied if p5/2+δ/

√
n→ 0.

Next, we examine the (MCV) conditions. We can now use part B of Lemma
8.1 to find F−1/2 and verify the (MCV) conditions directly, or we can observe
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by Section 3 of (Ghosal, 2000, 60-62), we have Bn = O(p3/2), B′n = O(p3/2)
and B∗n = O(p2). So, we have the following:

(i) Bnp
3+3δ/

√
n→ 0 if and only if p9/2+3δ/

√
n→ 0, if and only if p9+6δ/n→

0, so Condition (MCV1) is satisfied if pn = O(n1/9−η) for some η > 0.
(ii) It can be seen that Condition (MCV2) is equivalent to B′np

1+δ/
√
n → 0

if and only if p5/2+δ/
√
n→ 0, which holds if and only if p5+2δ/n→ 0.

(iii) Condition (MCV3) is equivalent toB∗np
4+4δ/n→ 0 if and only if p6+4δ/n→

0.
(iv) In order to evaluate M2r, note that Vj = O(

√
p), so M

1/r
2r = O(p), that

is, Condition (MCV4) holds with m = 1.

Thus all the (MCV) conditions are satisfied when p = O(n1/9−η) for some η > 0.
Before we can conclude that this is the rate, we must verify (PDB).

Note that conditions (PDB) are written in terms of the natural parametriza-
tion, so we must transform from the πj-parametrization to the θj-parametrization,
as we did for the (BF) conditions. However, this time we are working with the
priors rather than the Fisher information. Let us consider a prior of product
form on π, say

∏p
j=0 hj(πj). To find the Jacobian, recall (4.1). where πj = πj(θ).

Since is seen that

det((
∂πi
∂θj

)) = det[diag(π1, . . . , πp)− ππT ] = π0 · · ·πp,

we get that Π(θ) =
∏p
j=0 πjhj(πj) where the πj ’s are expressed as functions

of θ. That is, Π(θ) remains of product form. Note that this does not mean
independence since π0 = 1−

∑p
j=1 πj .

Now, assuming | log hj(πj)| = O(log p), which is satisfied for the conjugate
Dirichlet class of priors, we have that for θ0

− log Π(θ0) = −
p∑
j=0

log πj,0 −
p∑
j=0

log hj(πj,0)

= O(p log p) + C

p∑
j=0

| log πj,0| = O(p log p),

verifying (PDB1).
For (PDB2), write∣∣∣∣log

Π(θ)
Π(θ′)

∣∣∣∣ ≤ p∑
j=0

| log πj − log π′j |+
p∑
j=0

| log hj(πj)− log hj(π′j)|. (4.3)

Now, for θ in a compact set, all πj are of order O(p−1). So, using the inequality
| log x− log y| ≤ max(x−1, y−1)|x− y|, we get that, for j = 0, . . . , p,

| log πj − log π′j | ≤ Cp|πj − π′j |,
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since 1
πj

and 1
π′
j

are of order O(p). Likewise, for all j = 0, . . . , p, we get

| log hj(πj)− log hj(π′j)| ≤ Cp|πj − π′j |

when the hj ’s are Lipschitz with O(p) constant. Using these in (4.3), observe
we bound the j = 0 term by the sum of the other terms:

|θ0 − θ′0| =

∣∣∣∣∣∣
1−

p∑
j=1

πj

−
1−

p∑
j=1

π′j

∣∣∣∣∣∣ ≤
p∑
j=1

|πj − π′j |.

Thus, (4.3) becomes∣∣∣∣log
Π(θ)
Π(θ′)

∣∣∣∣ ≤ Cp

p∑
j=1

|πj − π′j |

= Cp

p∑
j=1

∣∣∣∣∣ eθj

1 +
∑p
j=1 e

θk
− eθ

′
j

1 +
∑p
j=1 e

θ′
k

∣∣∣∣∣
=

Cp

(1 +
∑p
j=1 e

θk)(1 +
∑p
j=1 e

θk)

×
p∑
j=1

∣∣∣∣∣∣eθj
1 +

p∑
j=1

eθ
′
k

− eθj
1 +

p∑
j=1

eθj


+eθj

1 +
p∑
j=1

eθj

−
1 +

p∑
j=1

eθj

 eθ
′
j

∣∣∣∣∣∣
≤ C

p

p∑
j=1

eθj

∣∣∣∣∣1−
p∑
k=1

eθ
′
k − 1 +

p∑
k=1

eθk

∣∣∣∣∣
+
C

p

p∑
j=1

(
1 +

p∑
k=1

eθk

)
|eθj − eθ

′
j |.

It is seen that eθj is bounded on compact sets, (1 +
∑p
k=1 e

θk) = O(p), and the
sum over j in the first term gives p. Thus,∣∣∣∣log

Π(θ)
Π(θ′)

∣∣∣∣ ≤ C

p∑
k=1

|eθk − eθ
′
k |+ C

p∑
j=1

|eθj − eθ
′
j |

≤ C

p∑
k=1

|θk − θ′k| ≤ C
√
p‖θ − θ′‖,

thereby verifying (PDB2).
Note that growth restrictions on p are more stringent for the multinomial

than for the normal to identify Jeffreys’ prior. This is because in the normal
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case, components are independent, giving diagonal Fisher information matrix
and moment bounds which do not grow with p. These features let us treat
the components nearly separately, leading to a weaker growth restriction on p.
This is consistent with the growth restrictions required for asymptotic normality
studied in Ghosal (2000).

It is worth contrasting the priors obtained here via Theorem 3.2, Theorem
3.4 and Corollary 3.5 with other priors for the multinomial. Aside from Jeffreys’
prior, the earliest seems to have been developed by Sono (1983) on the basis of
transforming the πj ’s so that the standardized highest posterior density (HPD)
regions in the transformed parameters match those of the likelihood by itself.
Essentially, this is a sort of invariance and frequentist matching approach. Sono’s
method gives Jeffrey’s prior for p = 1 but not for p ≥ 2. Sono (1983) noted that
the resulting priors depend on the ordering of the parameters and that the
Bayes test for a point hypothesis on π based on the standardized HPD regions
is equivalent to the likelihood ratio test (independent of the ordering of the
πj ’s).

Berger and Bernardo (1992b) studied the same problem from the standpoint
of reference priors developing ordered group reference priors. This technique is
helpful when there is a natural way to partition a finite dimensional parame-
ter of interest into several subvectors that can be ranked in order of inferential
importance. They observe that product form priors, such as the Jeffreys prior
in the multinomial case, allow inference about the groups of parameters to be
decoupled in the sense that the product form of the prior leads to a sort of
product form for the posterior. Moreover, the case of the Jeffreys prior for the
multinomial is quite special in that it is proper and marginalizes, i.e., integrating
out the last subvector of parameters in the prior leads to the reference prior for
all but the last subvector of parameters. Berger and Bernardo (1992b) verifies
that there are often numerous ways to partition a parameter vector into subvec-
tors and that the results are typically not equivalent. Most recently, Bernardo
(2010) derived that a Dirichlet(p−1, . . . , p−1) is obtained when the p parameters
are partitioned into p groups of one parameter each, i.e., the prior assignment
is done one-at-a-time treating the remaining parameters at each stage as a nui-
sance. In the present context of increasing p, however, this “converges” to a
Dirichlet(0, . . . , 0) which is improper and does not satisfy the requirement that
all α−1

j be bounded.
Beyond tractable cases like the multinomial, the ordered group reference prior

method may not work as conveniently because it rests on assigning an objective
prior at each conditioning step. In general, the prior they used comes out of their
paper Berger and Bernardo (1989) and follows from an asymptotic expansion
in Ghosh and Mukerjee (1992) that requires independence assumptions that are
often not satisfied. Thus, while this prior may be a sensible choice in general
and may be regarded as an approximation to the reference prior identified in
Corollary 3.5, it is not in general a reference prior. Nevertheless, the method
of building up objective priors by ordering the parameters and choosing priors
in m stages does provide a way to find non-informative priors when there are
many parameters.
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From a more heuristic perspective, the Dirichlet(α1, . . . , αp) distribution is
conjugate to the multinomial π and choosing αj = 1 for all j gives a uniform
distribution on the (p − 1)-dimensional simplex. This prior is objective in the
sense of the Principle of Insufficient Reason. This differs from Jeffreys’ prior,
which is Dirichlet( 1

2 , . . . ,
1
2 ) and proper but is not uniform. By contrast, setting

all the αj ’s to zero results in the limiting improper prior resulting from one-
parameter-at-a-time prior assignment. The Dirichlet(0, . . . , 0), however, can be
regarded as uniform on the log πj ’s, see Chap. 3, Sec. 5 in Gelman et al. (2004).
Heo and Kim (2007) examined the behavior of the posterior from a multinomial
likelihood using the Dirichlet prior for a variety of choices of the αj ’s.

4.3. Dirichlet model

As a third example, consider a Dirichlet distribution which we write in the form

Γ(θ1 + 1) · · ·Γ(θp + 1)
Γ(
∑p
j=1 θj + p)

yθ11 · · · yθpp

for θ1, . . . , θp > −1, 0 < yj < 1 and
∑p
j=1 yj = 1. Putting this in the form

of a natural exponential family enables us to recognize the sufficient statistic
X = (log Y1, . . . , log Yp), the natural parameter θ = (θ1, . . . , θp) and

ψ(θ) = log Γ(
p∑
j=1

θj + p)−
p∑
j=1

log Γ(θj + 1).

The second partial derivatives of ψ with respect to the θj ’s give the Fisher infor-
mation. Let Ψ denote the digamma function, that is, the derivative of the log-
arithm of the gamma function and let Ψ′ denote the derivative of the digamma
function, called the trigamma function. So, we can write the Fisher information
in terms of the trigamma function Ψ′:

∂2

∂θj∂θk
ψ(θ) =

{
Ψ′(
∑p
j=1 θj + p)−Ψ′(θj + 1), if j = k,

Ψ′(
∑p
j=1 θj + p), if j 6= k.

(4.4)

and hence
F = D − a11T ,

where 1 indicates the 1-vector 1 = (1, . . . , 1), D = diag(a1, . . . , ap), aj = aj(θ) =
−Ψ′(θj +1) and a = −Ψ′(

∑p
j=1 θj +p). On the real line, the trigamma function

is given by Ψ′(x) =
∑∞
k=0(x + k)−2. It is positive, decreasing in x, and has an

asymptote at zero.
We need to find F−1 and J which we then use to find J−1. Using part A of

Lemma 8.1 we get

F−1 = D−1 − a

1 + a1TD−11
D−111TD−1,
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in which the factor simplifies to a(1 − a
∑p
j=1 a

−1
j )−1 and the (j, k)-th entry

in D−111TD−1 is a−1
j a−1

k for j, k = 1, . . . p. Note that F−1 is well defined
provided a−1 6=

∑p
j=1 a

−1
j . It is seen that, for any `, aj is bounded above for

θj > ` > −1 and aj goes to zero as θ increases. Likewise, a is bounded above
for

∑p
j=1 θj + p > ` > −1 and goes to zero as

∑p
j=1 θj increases. Since F

is the variance-covariance matrix of a nonsingular distribution, F is positive
definite for any set of θ’s satisfying θj > −1. Thus, a−1 6=

∑p
j=1 a

−1
j . Further,

because of the continuous dependence of the aj ’s on the θj ’s, it follows that
b = 1 − a

∑p
j=1 a

−1
j remains boinded away from zero if θj > ` > −1 for all j,

and any fixed `. It follows that ‖F−1‖ ≤ tr(F−1) = O(p).
Now, we use part B of Lemma 8.1 to find J , a square root of F . Letting

u =
√
a1, we find

J = D1/2 + vwT ,

where v = −a(1 +
√

1− a
∑p
j=1 a

−1
j )−11 and wT = (a−1/2

1 , . . . , a
−1/2
p ).

So, using part A of Lemma 8.1 again, we find the inverse is

J−1 = D−1/2 − D−1/2vwTD−1/2

1 + wTD−1/2v
= D−1/2 +

c

1− c
∑p
j=1 a

−1
j

M

where c = a(1 +
√

1− a
∑p
j=1 a

−1
j )−1 and M is the matrix with (j, k)-th entry

a−1
j a

−1/2
k . By simple algebra 1− c

∑p
j=1 a

−1
j =

√
b, which is bounded away from

zero and c ≤ a is bounded uniformly in θ as long as θj > ` for any j, for any
fixed ` > −1. Note that the entries in M are bounded as well.

To find the rates required for the (MCV) conditions we must examine the
moments of V = J−1(X − µ). So, consider a p-dimensional unit vector uT =
(u1, . . . , up) and observe that, from the form of V , we have

uTV =
p∑
j=1

uj
(Xj − µj)√

aj
+

c√
b

p∑
j=1

(Xj − µj)√
aj

p∑
j=1

uj
aj
. (4.5)

Recall that Xj = log Yj and that Yj = Wj/W in distribution, where the Wj ’s
are independent Gamma(θj + 1, 1) random variables and W =

∑p
j=1Wj is a

Gamma(
∑p
j=1 θj + p, 1) random variable. Consequently, Xj = logWj − logW

and µj = E(logWj) − E(logW ). So, denoting l̃ogW j = logWj − E(logWj) =

logWj −µj and l̃ogW = logW −E(logW ) = logW −
∑p
j=1 µj respectively, we

can rewrite uTV in (4.5) as

uTV =
p∑
j=1

uj

(
l̃ogW j − l̃ogW

√
aj

)

+
c√
b

p∑
j=1

(
l̃ogW j − l̃ogW

√
aj

)
p∑
j=1

uj
aj
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=
p∑
j=1

uj
l̃ogW j√

aj
− l̃ogW

p∑
j=1

uj√
aj

+
c√
b

 p∑
j=1

l̃ogW j√
aj

 p∑
j=1

uj
aj


− c√

b

l̃ogW
p∑
j=1

1
√
aj

 p∑
j=1

uj
aj

 .

It is the fourth moment of the last upper bound that we must control for
(MCV3). So, using (a+ b+ c+ d)2 ≤ 4a2 + 4b2 + 4c2 + 4d2 gives four terms

E|uTV |4 ≤ 4E

 p∑
j=1

uj
l̃ogW j√

aj

4

(4.6)

+4

 p∑
j=1

uj√
aj

4

E|l̃ogW |4. (4.7)

+4
(
c√
b

)4
 p∑
j=1

uj
aj

4

E

 p∑
j=1

l̃ogW j√
aj

4

(4.8)

+4
(
c√
b

)4
 p∑
j=1

uj
aj

4 p∑
j=1

1
√
aj

4

E(l̃ogW )4. (4.9)

We bound (4.6) and (4.8) by the Marcinkiewicz-Zygmund inequality for centered
random variables with finite 2r-th moments:

E

 p∑
j=1

Zj

2r

≤ Crpr−1

p∑
j=1

E|Zj |2r.

Thus, for r = 2 (4.6) is bounded by

4C2p

p∑
j=1

u4
j

a2
j

E|˜logWj |4 (4.10)

and (4.8) is bounded by

4
(
c√
b

)4
 p∑
j=1

uj
aj

4

C2p

p∑
j=1

E| log W̃j |4

a2
j

. (4.11)

Now, to work out rates for the (MCV) conditions, we start by finding the
orders of (4.7), (4.9), (4.10), and (4.11).
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Consider the expression in (4.10). As before, when the θ’s are bounded, a−2
j <

C ′ and there is a C so that E|˜logWj |4 < C. Since 1 = ‖u‖4 ≥ u4
1 + · · · + u4

p,
(4.10) is bounded by

4C2pC
′C

p∑
j=1

u4
j = O(p).

Next, for (4.7), recall that W ∼ Gamma(
∑p
j=1 θj + p, 1). So E(l̃ogW )4 =

Ψ′′′(
∑p
j=1 θj + p) ≤ c since all polygamma functions are bounded above as long

as the argument stays away from zero. This is due to the series representation

Ψ(m)(t) = (−1)m+1m!
∞∑
k=0

1
(t+ k)−(m+1)

.

Indeed,

|Ψ(m)(t)| ≤ c
∫ ∞
t

1
x−(m+1)

dx = O(t−m)

as t→∞. In the present case, all θj > ` > −1, so
∑p
j=1 θj + p grows like p, i.e.,

E(l̃ogW )4 = O(p−3). For bounded θ, there is a ` so that aj > ` > 0, i.e., a−1/2
j

has a finite bound C ′. So, (4.7) is bounded by

4C ′4C

 p∑
j=1

uj

4

O(p−3) ≤ 4C ′4C

√p
√√√√ p∑

j=1

u2
j

4

O(p−3) = O(p−1).

Now consider the expression in (4.11). Bounding E|W̃j |4’s and a−2
j ’s by a

constant, (4.11) is bounded from above by

Cp2

(
c√
b

)4
 p∑
j=1

uj
aj

4

.

We now argue that c2(
∑p
j=1(uj/aj))2 is bounded. Then, since b is bounded

away from zero, it will follow that the above expression is O(p2). To this end,
observe that c = a(1 +

√
b)−1 and note that

c2

 p∑
j=1

uj
aj

2

≤
a2
∑p
j=1 u

2
j

∑p
j=1 a

−2
j

1 +
√
b)2

≤ a2

p∑
j=1

a−2
j

≤ a

p∑
j=1

a−1
j = 1− b ≤ 1,

since aa−1
j ≤ 1. Alternatively, one can use the fact that c = O(p−1).
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Finally, we bound (4.9). As E(l̃ogW )4 = O(p−3), letting C ′ be a bound on
all a−1

j ’s and C ′′ be a bound on a
−1/2
j ’s for bounded θ, (4.8) is bounded by

Cp−3

 p∑
j=1

1
√
aj

4

c4

b2

 p∑
j=1

uj
aj

4

= O(p),

since, as shown above, c
∑p
j=1(uj/aj) = O(1) and

∑p
j=1 a

−1/2
j = O(p). Thus

E|uTV |4 = O(p2) for any u with ‖u‖ = 1 for θ bounded away from zero and
uniformly bounded above. That is, B∗n = O(p2) since the domain of θ’s includes
local neighborhoods of the sort used in the definition of B∗n. To get rates for Bn
and B′n, note that E|X|3 ≤ (E|X|4)3/4. Thus, E|uTV |3 ≤ (O(p2))3/4 = O(p3/2)
and Bn = B′n = O(p3/2).

Note that the preceding extends to give M2r = maxj Eθ0 |Vj |2r = O(1). We
can now identify rates because we can choose m = 0 to satisfy (MCV4). Write

Vj =
Xj − µj√

aj
+

c√
baj

p∑
k=1

Xk − µk√
ak

=
˜logWj − l̃ogW

√
aj

+
c√
baj

p∑
k=1

˜logWk√
ak
− c l̃ogW√

baj

p∑
k=1

1
√
ak
.

Then, for any r ≥ 1,

|Vj |2r ≤ C

[
|˜logWj |2r

arj
+
|l̃ogW |2r

arj

+
c2r

bra2r
j

∣∣∣∣∣
p∑
k=1

˜logWk√
ak

∣∣∣∣∣
2r

+
c2r|l̃ogW |2r

bra2r
j

(
p∑
k=1

1
√
ak

)2r
 .

Taking expectations gives

E|Vj |2r ≤ C ′

[
E|˜logWj |2r

arj
+

E|l̃ogW |2r

arj

+
c2rpr−1

bra2r
j

p∑
k=1

E|˜logWk|2r

ark
+
c2rE|l̃ogW |2r

bra2r
j

(
p∑
k=1

1
√
aj

)2r
 .

≤ C ′
[
O(1) +O(p−(2r−1)) +O(c2rpr) +O(c2rp−(2r−1)p2r)

]
.

Now,

c =
a

1 +
√
b
≤ a = Ψ′(

p∑
j=1

θj + p) = O(p−1),

uniformly for all θj ’s bounded and θj > ` > −1. This gives E|Vj |2r = O(1) for
any r ≥ 1 and j = 1, . . . , p. So, we can choose m = 0 in (MCV4) as claimed.

Now, (MCV1)–(MCV3) give the following.
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1. For (MCV1), p must satisfy p3/2p3(1+0)/2+2δ/
√
n → ∞. That is, p =

O(n1/6−η) for some η > 0.
2. For (MCV2), p must satisfy p3/2p(1+0)/2+2δ/

√
n → ∞. That is, p =

O(n1/4−η) for some η > 0.
3. For (MCV3), p must satisfy p2p2(1+0)+4δ/n → 0. That is, p = O(n1/4−η)

for some η > 0.

It remains to verify (BF1), (BF2), (PDB1) and (PDB2). Verification of (BF1)
is easy: apply (2.9) to see that any α > 1 will suffice. By contrast, Conditions
(BF2), (PDB1) and (PDB2) involve properties of the prior and so are related
to each other. We consider two cases: Π is a conjugate prior and Π is Jeffreys’
prior.

Beginning with conjugate priors, recall that a regular exponential family such
as the Dirichlet has natural form exp

[∑p
j=1 ηjxj − ψ(θ)

]
. So, its conjugate fam-

ily is is of the form Π(θ) ∝ exp
[∑p

j=1 ηjαj − λψ(η)
]
, where λ > 0 and αj/λ < 0

on bounded sets of θ, see Chap. 4, p. 113, Brown (1986). In the present setting,
θ ranges over {θ : for all j,−1 < ` < θj < M}, and the Dirichlet is regular
in the natural parameter θ. Note that the conjugate prior is not of the product
form, so we cannot use (2.7) or (2.8) and must proceed with a direct verification
of (PDB1) and (PDB2).

For any conjugate prior, (PDB1) is

| log Π(θ)| = |
p∑
j=1

θjαj − λψ(θ)| ≤ O(p) + |λ||Ψ′(
p∑
j=1

θj + p)|.

The last term on the right is bounded when the θj ’s are in a compact set so
(PDB1) is satisfied for conjugate priors with rate O(p).

For (PDB2), the difference of logarithms for conjugate priors is

| log Π(θ)− log Π(θ0)| ≤
p∑
j=1

|θj − θ′j |αj + λ|Ψ′(
p∑
j=1

θj + p)−Ψ′(
p∑
j=1

θ′j + p)|

≤ C

p∑
j=1

|θj − θ′j |+ λ|Ψ′′(ζ∗)|
p∑
j=1

|θj − θ′j |

≤ C
√
p‖θ − θ′‖.

Thus, it is seen that the rate Kn in (BF2) is Kn(p) = O(
√
p).

Now, verification of (BF2) is easy. Since
√
‖F−1‖ = O(

√
p), the rate from

(BF2) becomes
√
p
√
pp(1+0)/2+δ/

√
n → 0, i.e., p(3/2)+δ/

√
n → 0 giving p =

O(n1/3−η), a weaker constraint that the (MCV) conditions did. So, the overall
rate is p = O(p1/6−η).

Next, we turn to the verification of (BF2), (PDB1) and (PDB2) for Jeffreys’
prior

Π(θ) ∝
√

det[diag(a1, . . . , ap)]− a11T ,
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where aj = −Ψ′(θj + 1) and a = Ψ′(
∑p
j=1 θj + p). Since Jeffreys’ prior is based

on the Fisher information, it is enough to observe that as long as the entries
in F are polynomially bounded in p, log det(F ) will be O(p log p) using (2.9)
thereby satisfying (PDB1).

To begin the verification of (PDB2), write

| log
√

detF (θ)− log
√

detF (θ′)| =
1
2
| log det[Ip + F (θ)−1(F (θ′)− F (θ))]|.

We first show that the “error term”

F (θ)−1(F (θ′)− F (θ)) ≤ Cp‖θ − θ′‖Ip (4.12)

in matrix ordering. To do this, we use the form of F (θ) and calculate directly.
We have

F−1(θ)(F (θ′)− F (θ)) = diag
(
a′1 − a1

a1
, . . . ,

a′p − ap
ap

)

+
a

b

 a−1
1
...

a−1
p

 (
a′1 − a1

a1
, . . . ,

a′p − ap
ap

)

−(a′ − a)

 a−1
1
...

a−1
p

 1

−a(a′ − a)
b

 p∑
j=1

1
aj


 a−1

1
...

a−1
p

 1, (4.13)

where 1 is the vector (1, . . . , 1)T of p ones, a′ = Ψ′(
∑p
j=1 θ

′
j + p) and a′j =

Ψ′(θ′j + 1). It is sufficient to show that all entries are bounded by a constant
multiple of ‖θ − θ′‖. Note that maxj |θj − θ′| ≤ ‖θ − θ′‖.

For the first term in (4.13), note |aj − a′j | is bounded by |θj − θ′j |, so each
entry is bounded by maxj |θj − θ′j |. The second term is similar because all the
entries in the matrix are of the form (aj − a′j) times a bound which is finite
when all the θj ’s are bounded and that |aj −a′j | ≤ C|θj − θ′j | by the mean value
theorem. Further, a = O(p−1), so the entries in the second term are bounded
by Cp−1‖θ − θ′‖. For the third term, note that

|a′ − a| =

∣∣∣∣∣∣Ψ′
 p∑
j=1

θj + p

−Ψ′

 p∑
j=1

θ′j + p

∣∣∣∣∣∣
≤ Cp−1

p∑
j=1

|θj − θ′j | ≤ Cp−1/2‖θ − θ′‖

by the mean value theorem, since |Ψ′(t)| = O(t−1) as t→∞. The other terms
are of the form a−1

j and hence bounded above since the aj ’s are bounded below
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when the θj ’s are bounded. Finally, as observed above, (a′−a) in the first factor
in the fourth term in (8.2) is bounded by Cp−1/2‖θ− θ′‖ and a = O(p−1). The
second factor is O(p) since the a−1

j ’s are bounded by a constant when the θj ’s
are bounded. The remaining two factors are entry-wise bounded as well, so all
entries in this term are bounded by the overall bound Cp−1/2‖θ−θ′‖. Collecting
these bounds together, all entries of F (θ)−1(F (θ′) − F (θ)) are bounded by a
constant multiple of ‖θ − θ′‖. An application of Lemma 8.2 now gives (4.12).
This leads to

log det(Ip + F−1(θ)[F ′(θ)− F (θ)]) ≤ log det(Ip + Cp‖θ − θ′‖Ip)
= log(1 + Cp‖θ − θ′‖)p

≤ Cp2‖θ − θ′‖. (4.14)

So, we get (PDB2) and can take Kn = O(p2) in (BF2). Using this and ‖F−1‖ =
O(p), (BF2) becomes p2p1/2p(1+0)/2+δ/

√
n → 0, i.e., p = O(n1/6−η), as in

(MCV1).

5. Discussion

Here we have established an asymptotic expansion for the relative entropy
D(pnθ0‖mn) between an n-fold product of an i.i.d. model and the mixture over
such models with respect to the prior. The error term is o(1) and the dimension
p of θ is increasing with n. We observe that our expansion is uniform under
appropriate assumptions. This leads to an expansion for I(Xn|Π), the SMI be-
tween a parameter and a sample of size n for a general class of priors. The
term involving the prior can be maximized so that the corresponding reference
prior is seen to be Jeffreys’ prior, even when p is increasing with n. We have
verified that in three examples, the normal, the multinomial, and the Dirichlet,
that our hypotheses are satisfied when p = O(n1/3−η), p = O(n1/9−η), and
p = O(p1/6−η), respectively, for some η > 0. An analogous treatment can be
given when the model depends on a nuisance parameter. In particular, one can
integrate the asymptotic expression for the SMI given a specific value of the nui-
sance parameter over a range of nuisance parameters to obtain the conditional
SMI which can be optimized as well to give a conditional version of Jeffreys’
prior, although the prior on the nuisance parameter is indeterminate. We com-
ment that the treatment given for the more general setting of Clarke and Yuan
(2004) is also expected to generalize. Moreover, other measures of distance may
be amenable to the same sort of treatment, parallel to Ghosh et al. (2010).

Our main results, like other reference prior derivations, rest on an asymp-
totic normality result in Appendix A. This key feature of this result, in contrast
to other asymptotic normality results, is that the error of approximation ad-
mits an explicit bound in the increasing parameter case. The approximation is
in L1-distance and the set on which the bound fails has probability decaying
polynomially in p.

From Bernardo (1979), Clarke and Yuan (2004), the present results, and
numerous other authors, it can be seen that, typically, when SMI can be opti-
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mized in its conditional or unconditional form, the result is a prior based on the
normalized square roots of asymptotic variances. The reference prior obtained
in Section 5 is also based on Jeffreys’ prior, but conditionally on the nuisance
parameter (whose distribution is unconstrained). In Clarke and Yuan (2004),
all the priors obtained are based on square roots of asymptotic variances, typi-
cally of an asymptotically normal statistic, or on ratios of asymptotic variances
from asymptotically normal statistics. This general form is consistent with those
derived under invariance considerations by George and McCulloch (1993).

The merit of Jeffreys’ prior, and variants such as ratios of asymptotic vari-
ances, remains somewhat inconclusive for high dimensional problems. Obviously,
if the information-theoretic assumptions are satisfied, then Jeffreys’ prior, or its
similarly derived variants are ineluctable. Even so, using the Jeffreys prior di-
rectly can be cumbersome when the Fisher information is far from diagonal, e.g.,
the Dirichlet example. One way around this (suggested originally by Jeffreys and
since studied extensively) is to use a product of Jeffreys priors for individual
parameters, or groups of parameters, see Berger and Bernardo (1992b) for one
instance of this. There is evidence that this is a viable solution in some cases.
There are also cases in which truncating the parameter space to get propriety
leads to nontrivial dependence on the truncation. This can be examined via
robustness to cut-off specification and some researchers have put a hyper prior
on the point of truncation to good effect.

Nevertheless, some investigators argue that relative to ideal inference, Jeffreys
prior can put too little or too much weight on tail regions of the parameter
space: Chen et al. (2009) noted that in many binomial regression problems
Jeffreys prior has tails that are lighter than any multivariate t-distribution.
By contrast, Jeffreys prior for the mean and variance, (µ,Σ), in a multivariate
normal problem is Π(µ,Σ) ∝ |Σ|−(p+2)/2 but the exact frequentist matching
prior is ΠFM (µ,Σ) ∝ |Σ|−p, see Geisser and Cornfield (1963), indicating the tails
of Jeffreys prior may be heavier than desirable. Note that this means Jeffreys’
prior can put too little or too much mass around some points such as zero.
Even in the simplest setting of a Bernoulli(π) where Jeffreys’ prior is ΠJ(π) ∝
(π(1 − π))−1/2 and puts relatively high mass around 1

2 making some values of
π more reasonable a priori than others. Zhu and Lu (2004) explain this by an
estimator matching argument. Roughly, they looked for priors that make the
MLE equal to the posterior mean and argue that the uniform is not always least
informative, deriving the Haldane prior ΠH(π) ∝ (π(1−π))−1 (when one wants
a uniform distribution on log(π/(1 − π))) and a prior that concentrates near
π = 0 or 1.

On the other hand, for some sparse problems involving dimension reduction
via principal components, see Guan and Dy (2009), Jeffreys’ prior seems to
work well. Also, various modifications of the Jeffreys’ prior such as Berger and
Bernardo (1992b) and Yang and Berger (1994) give good performance, even in
certain regression problems; see Chen et al. (2009). Overall, it seems rare that
Jeffreys’ prior, or some modification of it, will fail to give good results.
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6. Appendix A: Posterior normality

The proof of Theorem 3.1 rests on the asymptotic normality of the posterior in
the L1-sense. This posterior normality is of a particularly strong form because
we obtain an explicit bound on the L1-distance on a “good” set

W = Wn,p,θ0,δ = {‖∆n‖ ≤
1
4
p(1+m)/2+δ}

such that P (W ) decays to zero at a polynomial rate in p−1 (see Lemma 6.5).
The first step of the proof of posterior normality is to use an instance of an
inequality that can be stated informally as follows. Let a and b be positive
integrable functions of u. Let {N,N c} be a partition of the domain such that
informally N stands for the central region, where |a − b| is small, whereas N c

stands for the tail region, where a and b are individually small. Then, we can
estimate the L1-distance between the normalized functions as follows. By adding
and subtracting a/

∫
b, bounding the first term by the second, and partitioning

the domain of integration we get∫ ∣∣∣∣ a∫
adu
− b∫

bdu

∣∣∣∣ du
≤
∣∣∣∣ 1∫
adu
− 1∫

bdu

∣∣∣∣ ∫ adu+
1∫
bdu

∫
|a− b|du

≤ 2
(

1∫
bdu

∫
N

|a− b|du+
∫
Nc

a∫
bdu

du+
∫
Nc

b∫
bdu

du

)
. (6.1)

Now, we can state our bound on the L1-distance between the posterior and
its normal approximation.

Theorem 6.1. Assume Conditions (MCV), (PDB) and (BF). Then on W , we
have ∫ ∣∣∣Π∗n(u)− φp(u|∆n, Ip)

∣∣∣du
. Kn

√
‖F−1‖p

(1+m)/2+δ

√
n

+
p3(1+m)/2+3δ

√
n

Bn +
p2+2m+4δ

n
B∗n

+e−p
1+m+2δ/16. (6.2)

Proof. The proof is very similar to that of Theorem 2.3 of Ghosal (2000). Start
by using (6.1) with a(u) = Π(θ0 + n−1/2Hu)Zn(u), b(u) = Π(θ0)Z̃n(u), recog-
nizing that φp is b(u)/

∫
b(v)dv. This gives that the left hand side of (6.2) is

bounded by two times(∫
Π(θ0)Z̃n(u)du

)−1

×
∫
‖u‖≤p(1+m)/2+δ

|Π(θ0) +
1√
n
Hu)Zn(u)−Π(θ0)Z̃n(u)|du
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+
(∫

Π(θ0)Z̃n(u)du
)−1

×
∫
‖u‖>p(1+m)/2+δ

Π(θ0 +
1√
n
Hu)Zn(u)du

+
∫
‖u‖>p(1+m)/2+δ

φp(u|∆n, Ip)du. (6.3)

The first term in (6.3) can be bounded by adding and subtracting Π(θ0)Zn(u)
and using the triangle inequality, namely by

sup
‖u‖≤p(1+m)/2+δ

∣∣∣∣∣∣∣
Π(θ0 +

1√
n
Hu)

Π(θ0) − 1

∣∣∣∣∣∣∣
∫
‖u‖≤p(1+m)/2+δ

Zn(u)du∫
Z̃n(u)du

+

∫
|Zn(u)− Z̃n(u)|du∫

Z̃n(u)du

≤ 2Kn

√
‖F−1‖p(1+m)/2+δ
√
n

O(1) + Bnp
3(1+m)/2+3δ

6
√
n

+ B∗np
2+2m+4δ

n

in view of Lemmas 6.8 and 6.12 below, respectively. The bound on the second
term of (6.3) follows from Lemma 6.10 and is e−p

1+m+2δ/16. The bound on the
third term of (6.3) follows directly from Lemma 6.11 below and is e−c1p

1+m+2δ
.

To complement Theorem 6.1, we extract a corollary that bounds the proba-
bility of W c. It is this result that is used in Theorem 3.1.

Corollary 6.2. On W = {∆n ≤ p(1+m)/2+δ/4}, Πn(
√
n‖J(θ−θ0)‖ > p(1+m)/2+δ)

is bounded by a multiple of

λ∗n := Kn

√
‖F−1‖p

(1+m)/2+δ

√
n

+
p3(1+m)/2+3δ

√
n

Bn +
p2+2m+4δ

n
B∗n

+e−p
1+m+2δ/16 + e−4p1+m+2δ

.

Proof. By adding and subtracting the limiting normal and using the triangle
inequality,

Π∗n(‖u‖ > p(1+m)/2+δ) .
∫
|Π∗n(u)− φp(u|∆n, Ip)|du

+
∫
‖u‖>p(1+m)/2+δ

φp(u|∆n, Ip)du. (6.4)

The corollary now follows from Theorem 6.1 and Lemma 6.11 below.
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Next, we turn to the formal proof of Theorem 6.1 which we have broken up
into a series of Lemmas. We begin with a result on local expansions for ψ and
ψ′. It is a restatement, in terms of the local parameter, of an approximation
result due to Portnoy (1988).

Lemma 6.3. The normalizing function in the exponential family has the local
expansion for every u,

ψ(θ0 + n−1/2Hu) = ψ(θ0) +
1√
n
uTJ−1µ+

1
2n
‖u‖2 +R1n, (6.5)

where, for some θ̃ lies between θ0 and θ0 + n−1/2Hu,

|R1n| =
∣∣∣ 1
6n3/2

Eθ0(uTV )3 +
1

24n2
{Eθ̃(u

TV )4 − 3
[
Eθ̃(u

TV )2
]2 ∣∣∣

≤ ‖u‖
3

6n3/2
Bn +

‖u‖4

24n2
B∗n. (6.6)

Further,

ψ′(θ0 + n−1/2Hu) = µ+
1√
n
Ju+R2n (6.7)

where R2n = 1
2nEθ̃

[
(uTV )2JV

]
.

The following lemma bounds the moments of ‖∆n‖ and hence controls prob-
abilities of deviation of it.

Lemma 6.4. Let r ≥ 1. Then there exist universal constants C2r, depending
only on r, so that E‖∆n‖2r ≤ C2rM2rp

r.

Proof. For i = 1, . . . , n, let (V1,i, . . . , Vp,i)T be i.i.d. outcomes of the random
variable V = (V1, . . . , Vp)T . Then

E‖∆n‖2r = E

∥∥∥∥∥
(

1√
n

n∑
i=1

Vi1, . . . ,
1√
n

n∑
i=1

Vip

)∥∥∥∥∥
2r

= E

{(
1√
n

n∑
i=1

Vi1

)2

+ · · ·+

(
1√
n

n∑
i=1

Vip

)2}r

≤ pr−1

{
E

∣∣∣∣∣ 1√
n

n∑
i=1

Vi1

∣∣∣∣∣
2r

+ · · ·+ E

∣∣∣∣∣ 1√
n

n∑
i=1

Vip

∣∣∣∣∣
2r}

(6.8)

≤ C2rp
r−1{E|V1|2r + · · ·+ E|Vp|2r} (6.9)

≤ C2rp
r max

1≤j≤p
E|Vj |2r

= C2rp
rM2r.

Note that (6.8) follows from the standard inequality (a1 + · · · + ak)r ≤
kr−1(ar1 + · · ·+ ark) and (6.9) follows from the Marcinkiewicz-Zygmund inequal-
ity — for mean-zero IID random variables, E|n−1/2

∑n
j=1 Vj |r ≤ CrE|V |r, r ≥ 1

for some constant Cr independent of the summands.
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The next lemma bounds the probability of W c, ensuring it is unlikely that
‖∆n‖ is too large.

Lemma 6.5. Let δ > 0, r ≥ 1, and assume Condition (MCV4). Then there
exists a constant C = C(r,m) but independent of δ, n, and p, so that Pθ0(W c) ≤
C/p2rδ.

Proof. The proof follows from Markov’s inequality, Lemma 6.4 and the use of
Condition (MCV4) to control M2r. We have from Condition (MCV4) that

Pθ0

(
‖∆n‖ >

p(1+m)/2+δ

4

)
≤ 42rEθ0‖∆n‖2r

pr+mr+2rδ
.

prM2r

pr+mr+2rδ
.

1
p2rδ

. (6.10)

Note that the main role of (MCV4) appears in Lemma 6.5 above to control the
probability of W c. This kind of condition is not needed for posterior normality
because posterior normality is a local property, i.e., depends only on a shrinking
neighborhood of θ0, and on the increase in number of data points. It is only
when we want to aggregate over data sequences by taking a probability that we
must control moments as in (MCV4).

On W , the set where ‖∆n‖ is relatively small, a bound on the maximum
likelihood estimator for standardized parameter can be given. The probability
that this bound can be violated can also be controlled at the O(p−2rδ) rate.
This is formalized in the following.

Lemma 6.6. Suppose that Conditions (MCV2) and (MCV4) hold. Then on W ,
we have the bound

‖
√
nJT (θ̂ − θ0)‖ ≤ p(1+m)/2+δ

2
. (6.11)

Consequently,

Pθ0

(
‖
√
nJT (θ̂ − θ0)‖ > p(1+m)/2+δ

2

)
≤ O(p−2rδ). (6.12)

Proof. The proof is similar to that of Theorem 2.1 of Ghosal (2000). Define
G(u) =

√
nJ−1{ψ′(θ0 + 1√

n
Hu) − X}. Since ψ is convex, in view of Theorem

6.3.4 in Ortega and Rheinboldt (1970), G(u) = 0 has a unique root in the set
{u : ‖u‖ ≤ p(1+m)/2+δ/2} provided we show that uTG(u) ≥ 0 on {u : ‖u‖ =
p(1+m)/2+δ/2}. Since

√
nJT (θ̂ − θ0) is clearly a root, in order to verify (6.11),

it suffices to show uTG(u) ≥ 0 on W for all u with ‖u‖ = p(1+m)/2+δ/2.
First observe that by (6.7),

uTG(u) =
√
nuTJ−1{ψ′(θ0 +

1√
n
Hu)−X}

=
√
nuTJ−1{µ+

1√
n
Ju+R2n −X}

= −uT∆n + ‖u‖2 +
uTJ−1

2
√
n

Eθ̃[(u
TV )2JV ]. (6.13)
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When ‖u‖ ≤ p(1+m)/2+δ/2, the last term in (6.13) is bounded as

uTJ−1Eθ̃[(u
TV )2JV ] ≤ Eθ̃|u

TV |3 ≤ p1+m+2δB′n‖u‖/4. (6.14)

Thus on W , the triangle inequality gives

uTG(u) ≥ ‖u‖2 − ‖u‖‖∆n‖ −
‖u‖
8
√
n
p(1+m)+2δB′n

= ‖u‖
{
p(1+m)/2+δ

2
− p(1+m)/2+δ

4
− p(1+m)+2δ

8
√
n

B′n

}
= ‖u‖p

(1+m)/2+δ

4

(
1− p(1+m)/2+δ

2
√
n

B′n

)
≥ 0 (6.15)

for all sufficiently large n by Condition (MCV2). Now, (6.12) follows from
Lemma 6.5.

The control on ∆n helps us study the local likelihood ratio process Zn

Z̃n(u) = exp[uT∆n −
1
2
‖u‖2]. (6.16)

Clearly,
∫
Z̃n(u) du = (2π)p/2e‖∆n‖2/2.

Lemma 6.7. For all ‖u‖ ≤ p(1+m)/2+δ, we have that

| logZn(u)− log Z̃n(u)| ≤ λn‖u‖2, (6.17)

where λn =
p(1+m)/2+δ

√
n

Bn+
p1+m+2δ

n
B∗n. Further, we have the one sided bounds

logZn(u) ≤ uT∆n −
1
2
‖u‖2(1− 2λn), (6.18)

logZn(u) ≥ uT∆n −
1
2
‖u‖2(1 + 2λn). (6.19)

Proof. By the definitions of Zn and Z̃n, and (6.5) in Lemma 6.3,

logZn(u)− log Z̃n(u)

=
√
nuTJ−1X − n

[
ψ(θ0 +

1√
n
Hu)− ψ(θ0)

]
− uT∆n +

1
2
‖u‖2

=
√
nuTJ−1X −

√
nuTJ−1µ− 1

2
‖u‖2 + nR1n − uT∆n +

1
2
‖u‖2

≤ n‖u‖2{p
(1+m)/2+δ

6n3/2
Bn +

p1+m+2δ

24n2
B∗n} ≤ λn‖u‖2, (6.20)

which proves (6.17).
Relations (6.18) and (6.19) clearly follow from the triangle inequality and the

definition of Z̃n(u).
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Lemma 6.8. Assume Conditions (MCV1) and (MCV3). Then on W , we have∫
‖u‖≤p(1+m)/2+δ | Zn(u)− Z̃n(u) | du∫

Z̃n(u)du
. p1+m+2δλn = o(1), (6.21)∫

‖u‖≤p(1+m)/2+δ Zn(u)du∫
Z̃n(u)du

= O(1). (6.22)

Proof. The proof is based on the proofs of Lemma 2.1 and Lemma 2.3 of Ghosal
(2000). Using |ex − ey| ≤ |x− y|max(ex, ey) gives

|Zn(u)− Z̃n(u)| ≤ | logZn(u)− log Z̃n(u)| × exp[uT∆n −
1
2

(1− 2λn)‖u‖2]

≤ λn‖u‖2 exp[uT∆n −
1
2

(1− 2λn)‖u‖2], (6.23)

from Lemma 6.7, (6.17), and (6.18). By a completing-the-square argument,

uT∆n −
1
2

(1− 2λn)‖u‖2 = −1
2

(1− 2λn)
∥∥∥∥u− ∆n

1− 2λn

∥∥∥∥2

+
‖∆n‖2

2(1− 2λn)

and hence∫
‖u‖2 exp[uT∆n −

1
2

(1− 2λn)‖u‖2]du

= (2π)p/2(1− 2λn)−p/2 exp
[
‖∆n‖2

2(1− 2λn)

]
×
∫
‖u‖2(2π)−p/2(1− 2λn)p/2 exp

[
− (1− 2λn)

2
‖u− ∆n

1− 2λn
‖2
]
du

= (2π)p/2(1− 2λn)−p/2+1 exp
[
‖∆n‖2

2(1− 2λn)

]p+
‖∆n‖2

(1−2λn)2

(1− 2λn)−1


= (2π)p/2(1− 2λn)−p/2+1 exp

[
‖∆n‖2

2(1− 2λn)

] (
p+ ‖∆n‖2(1− 2λn)−1

)
.

Using this and (6.23),(∫
Z̃n(u)du

)−1 ∫
‖u‖≤p(1+m)/2+δ

|Zn(u)− Z̃n(u)|du

≤ λn
(
p+

‖∆n‖2

1− 2λn

)
(1− 2λn)−p/2+1 exp

[
‖∆n‖2

2
((1− 2λn)−1 − 1)

]
≤ λn

(
p+

p1+m+2δ

4(1− 2λn)

)
(1− 2λn)−p/2+1 exp

[
λnp

1+m+2δ

1− 2λn

]
. p1+m+2δλn,
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in which the restriction to W was used at the second inequality. Clearly, con-
ditions (MCV1) and (MCV3) give p1+m+2δλn → 0. This also implies that
(1 − 2λn)−p/2 → 1. In particular, that 1 − 2λn > 1

2 for sufficiently large n.
These assertions together imply (6.21).

For (6.22), note that∫
‖u‖≤p(1+m)/2+δ Zn(u)du∫

Z̃n(u)du
≤ 1 +

∫
‖u‖≤p(1+m)/2+δ |Zn(u)− Z̃n(u)|du∫

Z̃n(u)du

= 1 +O(p1+m+2δλn) = O(1)

Lemma 6.9. Under Conditions (MCV1)–(MCV3), logZn(u) ≤ −p1+m+2δ/8
on W .

Proof. The proof is similar to that of Lemma 2.2 of Ghosal (2000). Let û =√
nJT (θ̂− θ0), where θ̂ is the MLE of θ. On W , we have ‖û‖ ≤ p(1+m)/2+δ/2 by

Lemma 6.6. By the convexity of ψ(θ), the log-likelihood function is log-concave,
and hence the likelihood decreases if θ moves away from θ̂ along any line passing
through θ̂.

Let u, ‖u‖ > p(1+m)/2+δ, be given and let ξ be the point of intersection of the
line passing through the origin and u with the sphere ‖u‖ = p(1+m)/2+δ. Thus,
‖ξ‖ = p(1+m)/2+δ. Now, by Lemma 6.7 and (6.18), we have

Zn(u) ≤ Zn(ξ) ≤ exp[ξT∆n −
1
2

(1− 2λn)‖ξ‖2]

≤ exp[‖ξ‖‖∆n‖ −
1
2

(1− 2λn)‖ξ‖]

= exp[p(1+m)/2+δ 1
4
p(1+m)/2+δ − 1

2
(1− 2λn)p1+m+2δ]

≤ exp[−1
8
p1+m+2δ].

Lemma 6.10. Assume Conditions (MCV1)–(MCV3), (BF1), and (PDB1).
Then on W , we have∫

‖u‖>p(1+m)/2+δ Π(θ0 + 1√
n
Hu)Zn(u)du∫

Π(θ0)Z̃n(u)du
≤ e−p

1+m+2δ/16. (6.24)

Proof. By Lemma 6.9 and a change of variables, it is seen that the second
integral in (6.24) is bounded from above by∫

‖u‖>p(1+m)/2+δ
Π(θ0 +

1√
n
Hu)Zn(u)du

≤ e−p
1+m+2δ/8np/2

√
det(F )

∫
Π(θ)dθ
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= exp[−1
8
p1+m+2δ +

p

2
log n+

1
2

log det(F )].

≤ exp[−1
8
p1+m+2δ + Cp log p]

using log n = O(log p) and the fact that log detF = O(p log p), in view of (BF1).
On the other hand,∫

Π(θ0)Z̃n(u)du = Π(θ0)e‖∆n‖2/2(2π)p/2 ≥ Π(θ0) ≥ e−cp log p,

by Condition (PDB1). Thus the ratio in (6.24) is bounded above by

exp[−1
8
p1+m+2δ +

p

2
log n+

1
2

log det(F ) + Cp log p] ≤ e−p
1+m+2δ/16.

Lemma 6.11. On W , we have that for some c1 > 0,∫
‖u‖>p(1+m)/2+δ

φp(u|∆n, Ip)du ≤ e−c1p
1+m+2δ

.

More generally, for a and b remaining in a fixed bounded set D, there exists
c2, c3 > 0 depending on D only such that on W ,∫

‖u‖>c3p(1+m)/2+δ
φp(u|a∆n, bIp)du ≤ e−c2p

1+m+2δ
.

Proof. Let ξ ∼ Np(∆n, Ip). Then ξ−∆n ∼ Np(0, Ip) and ‖ξ−∆n‖2 ∼ χ2
p. Since

‖∆n‖ ≤ 1
4p

(1+m)/2+δ on W ,∫
‖u‖>p(1+m)/2+δ

φp(u|∆n, Ip)du ≤ P(‖ξ −∆n‖ >
3
4
p(1+m)/2+δ) ≤ e−c1p

1+m+2δ
.

More generally, with ξ ∼ N(a∆n, bIp), we have∫
‖u‖>c3p(1+m)/2+δ

φp(u|a∆n, bIp)du = P
(
‖ξ − a∆n‖√

b
) >

c3 − a√
b
p(1+m)/2+δ

)
≤ e−

c1(c3−a)
2

b p(1+m)/2+δ
,

so it is enough to choose c2 = c1(c3 − a)2/b.

Lemma 6.12. Assume Conditions (BF2) and (PDB2). Then

sup
‖u‖≤p(1+m)/2+δ

∣∣∣Π(θ0 + 1√
n
Hu)

Π(θ0)
− 1
∣∣∣ ≤ 2Kn

√
‖F−1‖p

(1+m)/2+δ

√
n

. (6.25)
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Moreover, the following bounds hold for all u with ‖u‖ ≤ p(1+m)/2+δ:

exp
[
−Kn

√
‖F−1‖p

(1+m)/2+δ

√
n

]
≤

Π(θ0 + 1√
n
Hu)

Π(θ0)

≤ exp
[
Kn

√
‖F−1‖p

(1+m)/2+δ

√
n

]
.

Proof. First, notice that n−1/2‖Hu‖ ≤ n−1/2
√
‖F−1‖‖u‖. Therefore, by Con-

dition (PDB2),

sup
‖u‖≤p(1+m)/2+δ

∣∣∣ log
Π(θ0 + 1√

n
Hu)

Π(θ0)

∣∣∣ ≤ 2Kn

√
‖F−1‖p

(1+m)/2+δ

√
n

,

from which the two one-sided bounds follow.
Using |ex − ey| ≤ |x− y|max(ex, ey), Condition (PDB2) gives that

∣∣∣Π(θ0 + n−1/2Hu)
Π(θ0)

− 1
∣∣∣ ≤ ∣∣∣ log

Π(θ0 + 1√
n
Hu)

Π(θ0)

∣∣∣ exp
[∣∣∣ log

Π(θ0 + 1√
n
Hu)

Π(θ0)

∣∣∣]
≤ Kn

√
‖F−1‖p

(1+m)/2+δ

√
n

exp
[
Kn

√
‖F−1‖p

(1+m)/2+δ

√
n

]
,

for ‖u‖ ≤ p(1+m)/2+δ, so that under Condition (BF2), (6.25) follows by noting
that the last factor is bounded by 2.

This completes the proof of Theorem 6.1.

7. Appendix B: Detailed proof of Lemma 3.3 and Theorem 3.1

To see how asymptotic normality of the posterior as in Corollary 6.2 applies
to the derivation of reference priors, let N = {u : ‖u‖ ≤ p(1+m)/2+δ} be
the local neighborhood (at 0) corresponding to Ñ = {θ = θ0 + n−1/2Hu :
‖u‖ ≤ p(1+m)/2+δ} at θ0 in the original parametrization and recall the bound
for Π∗n(N c) ≤ λ∗n on W by use of (6.4) in Corollary 6.2. Then

λ∗n ≥ Π∗n(‖u‖ > p(1+m)/2+δ)

=

∫
Nc

Π∗(u)p(Xn|θ0 + n−1/2Hu)du∫
N

Π∗(u)p(Xn|θ0 + n−1/2Hu)du+
∫
Nc

Π∗(u)p(Xn|θ0 + n−1/2Hu)du

can be re-arranged to give∫
Nc

Π∗(u)p(Xn|θ0 + n−1/2Hu)du ≤ λ∗n
1− λ∗n

∫
N

Π∗(u)p(Xn|θ0 + n−1/2Hu)du.

We begin with the proof of Lemma 3.3.
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Proof of Lemma 3.3: For the upper bound, we have

mn(Xn)
p(Xn|θ0)

=
∫
Ñ

Π(θ)
p(Xn|θ)
p(Xn|θ0)

dθ +
∫
Ñc

Π(θ)
p(Xn|θ)
p(Xn|θ0)

dθ

≤
(

1 +
λ∗n

1− λ∗m

)∫
Ñ

Π(θ)
p(Xn|θ)
p(Xn|θ0)

dθ

= (1− λ∗n)−1n−p/2(det(F ))−1/2

∫
N

Π(θ0 + n−1/2Hu)Zn(u)du

≤ (1− λ∗n)−1 exp
[
Kn

√
‖F−1‖p

(1+m)/2+δ

√
n

]
Π(θ0)n−p/2(det(F ))−1/2

×
∫

exp
[
uT∆n −

1
2

(1− 2λn)‖u‖2
]
du

= (1− λ∗n)−1 exp
[
Kn

√
‖F−1‖p

(1+m)/2+δ

√
n

]
Π(θ0)n−p/2(det(F ))−1/2

× (2π)p/2(1− 2λn)−p/2 exp
[
‖∆n‖2

2(1− 2λn)

]
.

Note that at the second inequality, estimate (6.18) and the upper bound of the
prior ratio in Lemma 6.12 were used.

The proof of the lower bound is actually simpler because the first inequality
in the proof of the upper bound is not needed; the nonlocal term can be dropped.
Otherwise, the same reasoning can be followed. Thus

n−p/2(det(F ))−1/2

∫
N

Π(θ0 + n−1/2Hu)Zn(u)du

≥ exp
[
−Kn

√
‖F−1‖p

(1+m)/2+δ

√
n

]
Π(θ0)n−p/2(det(F ))−1/2

×
∫
N

exp[uT∆n −
1
2

(1 + 2λn)‖u‖2]du

= exp
[
−Kn

√
‖F−1‖p

(1+m)/2+δ

√
n

]
Π(θ0)n−p/2(det(F ))−1/2(2π)p/2

× exp
[
‖∆n‖2

2(1 + 2λn)

]
(1 + 2λn)−p/2

×
(

1−
∫
Nc
φp

(
u| ‖∆n‖

1 + 2λn
, (1 + 2λn)Ip

)
du

)
.

Here, in the second step, estimate (6.19) and the lower bound of the prior ratio
in Lemma 6.12 were used. Now, the statement follows from the second part of
Lemma 6.11.

Proof of Theorem 3.1: Let us start with the first error term (3.4).
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By restricting the domain of integration, we have

mn(Xn) =
∫
p(Xn|θ)Π(θ)dθ

≥
∫
‖θ−θ0‖< 1

n

p(Xn|θ)Π(θ)dθ

= Π
(
‖θ − θ0‖ <

1
n

){
1

Π(‖θ − θ0‖ < 1
n )

∫
‖θ−θ0‖< 1

n

p(Xn|θ)Π(θ)dθ
}

;

here and afterwards, we shall slightly abuse notation to denote prior probabil-
ities by the same symbol Π. Therefore, by Jensen’s inequality (− log E(X) ≤
−E(logX)), Condition (PDB1), and the form of exponential families for n in-
dependent random variables, log(p(Xn|θ0)/mn(Xn)) is

− log Π
(
‖θ − θ0‖ <

1
n

)
−

∫
‖θ−θ0‖< 1

n

{
log p(Xn|θ)

p(Xn|θ0)

}
Π(θ)dθ

Π(‖θ − θ0‖ < 1
n )

≤ − log
(
e−cp log p

np

)
− n

Π(‖θ − θ0‖ < 1
n )

∫
‖θ−θ0‖< 1

n

{(θ − θ0)T X̄ − ψ(θ) + ψ(θ0)}Π(θ)dθ.

Taken together, we now can bound (3.4) using the following:

Eθ0

{
log+

(
p(Xn|θ0)
mn(Xn)

)
1W c

}
≤ (p log n+ cp log p)Pθ0(W c) +

n

Π(‖θ − θ0‖ < 1
n )

×
∫
‖θ−θ0‖< 1

n

Eθ0
{
|(θ − θ0)TX − ψ(θ) + ψ(θ0)|1W c

}
Π(θ)dθ

≤ C(p log n+ p log p)
p2rδ

+
n

Π(‖θ − θ0‖ < 1
n )

×
∫
‖θ−θ0‖< 1

n

Eθ0
{
|(θ − θ0)T X̄ − ψ(θ) + ψ(θ0)|1W c

}
Π(θ)dθ. (7.1)

The first term in (7.1) tends to zero when n is polynomial in p provided we
choose r > 1/(2δ). Thus, it is enough to use expression (6.5) in the second term
of (7.1) to see it is bounded by

Cn

prδΠ(‖θ − θ0‖ < 1
n )

∫
‖θ−θ0‖< 1

n

(
Eθ0 |(θ − θ0)T (X − µ)

− 1
2n

(θ − θ0)TF (θ − θ0) +R1,n|2
)1/2

Π(θ)dθ
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≤ Cn

prδΠ(‖θ − θ0‖ < 1
n )

∫
‖θ−θ0‖< 1

n

(
Eθ0 [(θ − θ0)T (X̄ − µ)]2

+
[

1
2n

(θ − θ0)TF (θ − θ0)
]2

+ Eθ0(R2
1,n)
)1/2

Π(θ)dθ. (7.2)

To deal with the three terms under the square root in (7.2), note that ‖u‖ ≤√
n‖F‖‖θ − θ0‖ and that the domain of integration is ‖θ − θ0‖ ≤ n−1. So, the

first term under the square root is

Eθ0 [(θ − θ0)T (X − µ)]2 =
1
n

(θ − θ0)TF (θ − θ0) ≤ ‖F‖
n3

(7.3)

Similarly, the second term under the square root is bounded above by (4n6)−1‖F‖2.
To deal with the third term under the square root, use Lemma 6.3 and (a+b)2 ≤
2a2 + 2b2 to obtain

Eθ0(R2
1,n) ≤

(
‖u‖3

6n3/2
Bn +

‖u‖4

24n2
B∗n

)2

≤ ‖F‖
3B2

n

3n6
+
‖F‖4(B∗n)2

12n8
.

Using these three bounds and the fact that the resulting integral cancels the
prior probability, (7.2) is bounded above by

Cn

prδ

√
‖F‖
n3

+
‖F‖2
4n6

+
‖F‖3B2

n

3n6
+
‖F‖4(B∗n)2

12n8
. (7.4)

Since
√
a1 + · · ·+ ak ≤

√
a1 + · · ·+√ak when aj ≥ 0, (7.4) is bounded by

C

prδ

(√
‖F‖
n

+
‖F‖
2n2

+
‖F‖3/2Bn√

3n2
+
‖F‖2B∗n
2
√

3n3

)
,

which goes to zero as a consequence of Condition (BF0) and the (MCV) condi-
tions. So, (3.4) holds.

To bound the second error term (3.5), let Gn = W c∩{mn(Xn) ≥ p(Xn|θ0)}.
Then, for νn the n-fold product of ν,

Eθ0

[
1W c log−

p(Xn|θ0)
mn(Xn)

]
= Pθ0(Gn)Eθ0

[
1Gn

Pθ0(Gn)
log
∫

Π(θ)p(Xn|θ)dθ
p(Xn|θ0)

]
≤ Pθ0(Gn) log

{∫
1Gn

Pθ0(Gn)

∫
Π(θ)p(Xn|θ)dθ
p(Xn|θ0)

p(Xn|θ0)dνn

}
= −Pθ0(Gn) logPθ0(Gn) + Pθ0(Gn) log

∫
Pθ(Gn)Π(θ)dθ

≤ −Pθ0(Gn) logPθ0(Gn) + Pθ0(Gn) log 1
= −Pθ0(Gn) logPθ0(Gn).
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Now −x log x→ 0 as x→ 0 and Pθ0(Gn) ≤ Pθ0(W c) ≤ C∗p−2rδ → 0 for any
choice of r, so (3.5) follows.

The third error term (3.6) is bounded by(p
2

log
n

2π

)
Pθ0(W c) +

(
log

Π(θ0)
(det(F ))1/2

)
Pθ0(W c)

.
log p
p2rδ−1

+
log p
p2rδ

(7.5)

using log n = O(log p), (BF1), and (PDB1). Thus, the bound goes to zero if
r > 1/(2δ).

To bound the fourth and last error term (3.7), let r > 1 be chosen and s be
the conjugate index r/(r − 1). Then,

Eθ0

(
‖∆n‖2 · 1{‖∆n‖ >

1
4
p(1+m)/2+δ}

)
≤
[
Eθ0‖∆n‖2r

]1/r [
Pθ0(‖∆n‖ >

1
4
p(1+m)/2+δ)

]1/s

. (prM2r)1/r(Cp−2rδ)1/s

. p1+m−2rδ/s,

by using Hölder’s inequality, Lemma 6.5 and Condition (MCV4). Thus, if r >
1 + (m + 1)/2δ, the upper bound (3.7) goes to zero. Finally, recalling that
Eθ0‖∆n‖2 = p, the limiting form for Rn is obtained.

8. Appendix C: Useful lemmas

Lemma 8.1. A) Let A be a real p× p matrix and u and v be vectors of length
p. If A is nonsingular then

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
,

provided that vTA−1u 6= −1.
B) Let A be a real, symmetric p× p matrix and u be a vector of length p. If

there exists a symmetric square root B for A i.e., B = BT and A = BBT = B2,
then

C = B − uuTB−1

1 +
√

1− uTA−1u

is a square root for A− uuT , provided that uTA−1u < 1.

Proof. Part A follows from direct verification. For part B, we need to verify
that CCT = A− uuT . Write d = 1 +

√
1− uTA−1u, C = B − (uuTB−1)/d and

CT = B − (B−1uuT )/d. Now,

CCT = A− 2uuT

d
+
uTA−1u

d2
uuT .
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To make CCT = A− uuT , observe that d satisfies the quadratic equation d2 −
2d+ uTA−1u = 0.

Here, A is diagonal, so finding inverses or symmetric square roots is easy.

Lemma 8.2. Let A = ((aij)) be a real p× p matrix with all entries bounded as
|aij | < η. Then A ≤ ηIp in matrix ordering, or equivalently, for any vector x of
length p, xTAx ≤ ηpxTx.

In particular, det(A) ≤ det(ηpIp) = (ηp)p.

Proof. Observe that

xTAx =
p∑
i=1

p∑
j=1

aijxixj ≤
p∑
i=1

p∑
j=1

|aij ||xi||xj |

≤ η

p∑
i=1

p∑
j=1

|xi||xj | = η

(
p∑
i=1

|xi|

)2

≤ η(
√
p‖x‖)2 = ηp‖x‖2.
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