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POSTERIOR CONVERGENCE GIVEN THE MEAN

BY B. CLARKE1 AND J. K. GHOSH 2

Purdue University

For various applications one wants to know the asymptotic behavior
Ž < .of w u X , the posterior density of a parameter u given the mean X of the

Ž < .data rather than the full data set. Here we show that w u X is asymptot-
ically normal in an L1 sense, and we identify the mean of the limiting
normal and its asymptotic variance. The main results are first proved
assuming that X , . . . , X , . . . are independent and identical; suitable1 n
modifications to obtain results for the nonidentical case are given sepa-

Žrately. Our results may be used to construct approximate HPD highest
.posterior density sets for the parameter which is of use in the statistical

theory of standardized educational tests. They may also be used to show
the covariance between two test items conditioned on the mean is asymp-
totically nonpositive. This has implications for constructing tests of item
independence.

1. Introduction. Let X for i s 1, 2, . . . be a sequence of independentlyi
Ž .and identically distributed iid random variables taking values in a k-dimen-

sional regular minimal lattice of common step length l with probability
Ž .function p x depending on a d-dimensional Euclidean parameter u su

Ž .u , . . . , u , distributed according to a continuous density w supported on the1 d
parameter space V. Under strong enough moment assumptions on the X ’si

Ž < .we show that the posterior distribution w u X of u given the mean X is
asymptotically normal in an L1 sense. We identify the location and asymp-

ˆ t ˆ y1 ˆ ˆŽ . Ž . Ž .totic variance of the approximating normal as u and J u S u J u ,m m
y1ˆ Ž .where, for d s k, u s m X , at least on a neighborhood of u , the true value

of the parameter J is the k = d derivative matrix generated by m as am

function of u , and Sy1 is the covariance matrix of any X . A result for d - ki
is also given.

n nŽ < . Ž < . Ž .If X is sufficient, then w u X s w u X , where X s X , . . . , X , so1 n
existing results imply asymptotic normality. When X is not sufficient, these

w Ž . Ž . Ž .results see Le Cam 1958 , Bickel and Yahav 1969 and Walker 1969 ;
x Ž .there are many others do not apply. In addition, Le Cam 1953 proves a

version of the desired result for the maximum likelihood estimator which is
Ž .asymptotically sufficient and Doksum and Lo 1990 establish a form of the

result for location families and equivariant estimators.
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In Section 3 we generalize our results to the case of independent nonidenti-
Ž .cally distributed inid random variables. These comprise a sort of ‘‘folk

Ž .theorem’’ in the educational testing circle according to Holland 1991 , who
originally suggested the problem.

In educational testing, the vector u represents an aptitude and the X ’s arei
the scores on the ith test item. It is often natural to condition on the total

w Ž .xscore nX see Yen 1984 rather than on the full data set to avoid data
storage problems. Our results then provide approximate highest posterior
density sets for the parameter. In data analysis, practitioners often group
data according to the value of a sum. Our theorems allow a form of asymp-

Ž .totic normality to apply within each group. In addition, Ackerman 1991
assumes such a result for the purpose of evaluating the influence of dimen-
sionality of a parameter on test item bias.

An example in which the X ’s are not identical and X is not sufficient is ai
w Ž .modification of the Rasch model see Lindsay, Clogg and Grego 1991 and

Ž .x Ž . Ž .Hambleton 1989 in which f y u is replaced by a f y u , where thei j j i j
a ’s and u ’s are known, and the task is to estimate f for a fixed value of i.j j i

Ž < .We obtain a general result on the asymptotic normality of w u X applicable
in this case.

One of the three main assumptions for many models in educational testing
Ž .is that the data be conditionally independent, given u ; see Lord 1980 and

Ž . Ž .Bartholomew 1987 . In part, Junker 1993 gives a heuristic argument
suggesting that a hypothesis test for the conditional independence given u of

Ž < .test items i and j could be based on the behavior of Cov X , X X , providedi j
it is nonpositive. We give conditions under which this expression is asymptot-
ically nonpositive for lattice-valued random variables that are conditionally
independent given u . Note that this expression is a manifest quantity; that is,
it can be calculated from the data without reference to the underlying
parametric family. This supports Junker’s program of characterizing the
desired latent properties of standardized tests in terms of manifest quanti-
ties.

The structure of the paper is as follows. In Section 2 we state and prove
our results for the case of independent and identical lattice-valued random
variables. First we consider the case that d s k and the parameter space is
compact. Then we give generalizations to d - k and to noncompact parame-
ter spaces. In Section 3 we give analogous results for the case of inid
lattice-valued random variables. Section 4 contains the application discussed
in the previous paragraph.

2. Identically distributed random variables. We demonstrate
Ž < .asymptotic normality of w u X when the X ’s are iid in three increasinglyi

general results. The first case is for d s k and a compact parameter space.
Our technique is based on a local limit theorem in Bhattacharya and Rao
Ž . Ž .1986 hereafter referred to as BR and a proposition about these quantities
which generalizes a result in BR.
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We use a three term upper bound on the L1 distance between the posterior
ˆŽ < . Ž .w u X and the target normal, denoted n u ; u , u . The three terms result0

from using three normal approximations. The first is the target normal itself,

ˆn u ; u , uŽ .0

dr2t y1s nJ u S u J u r 2pŽ . Ž . Ž . Ž .' m 0 0 m 02.1Ž .
t t y1ˆ ˆ= exp y nr2 u y u J u S u J u u y uŽ . Ž . Ž . Ž .Ž . Ž .m 0 0 m 0ž /

y1ˆ< < Ž . w Ž .where ? denotes the determinant and u s m X for d s k where m u s
xE X , which need only be defined near u .u 1 0

The second normal approximation is obtained from a uniformized local
Ž .limit theorem. Since the conditional density of X given u , p x , is notu

known, we require a local limit theorem and its Edgeworth refinements to
'Ž . 5 5 Ž .approximate p x sufficiently well both for X y u s O 1r n as well asu

for much larger deviations. The density of X can be approximated by a sum
whose terms are normal densities multiplied by polynomials. The rate at

Ž .which the distance between p X and its closest approximation of this typeu

tends to zero depends on the number of moments assumed to exist. One such
result can be found in BR. Let

r 'l f n X y m uŽ .Ž .Ž .i '2.2 q X s w n X y m uŽ . Ž . Ž .Ž .Ž .Ýu r n SŽu .k r2 Ž iy1.r2n nis1

Ž .be the r term approximation to p X , where f ' 1, and for i ) 1, f is au 1 i
polynomial of degree at most 3r in k variables and w is the normalSŽu .

Ž .density with mean 0 and variance S u . Here, r will always be a positive
integer. The coefficients of f depend on u also; however, we suppress thisi
because it will not affect our arguments.

Ž .The third normal approximation is a variant on 2.2 , to wit,

r 'l f n X y m uŽ .Ž .Ž .i '2.3 q X s w n X y m uŽ . Ž . Ž .Ž .Ž .Ýuu r n SŽu .k r2 Ž iy1.r20 0n nis1

in which the variance matrix is evaluated at u .0
Ž . Ž . Ž . Ž < . Ž .We recall that the joint density for Q, X is w u p X s w u X m X ,u

Ž . Ž . Ž . Ž .where m X is the mixture of densities m X s H w u p X du . We denoteV u

Ž . Ž . Ž .mixtures over approximations 2.2 and 2.3 with respect to w by m X andr
Ž .m X , respectively. For brevity we omit subscripts, superscripts and argu-u r0

ments where no confusion will result.
Shrinking neighborhoods in the sample space and in the parameter space

n '� 5 Ž .5 4are essential to the proof. We denote them U s X : X y m u F k r nu n 0 n0X X X' ' '� 5 Ž . Ž .5 4and U s u : m u y m u F k r n , where k r n , k r n ª 0 andn, u 0 n n n0
5 5? is a norm on the lattice L, assumed to be embedded in k-dimensional real
space. The defining condition on U s U can be equivalently expressed asu n0ˆ '5 Ž . Ž .5m u y m u F k r n . To permit upper bounds, Taylor expansions of m0 n
can be used to obtain sets containing U and U X . The defining conditionsu n u n0 0
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X Xˆ ' '5 5 5 5 5 Ž .5become u y u F k ra n and u y u F k ra n , where a s inf =m u0 n 0 n
and the infimum is over u 9 in a ball of radius « centered at u . We will use0

Ž .1r2 X XŽ .1r2 X Xk s c ln n and k s c ln n , where c , c ) 0 and c y c ) 0.n n
First we state and prove a uniform version of Theorem 22.1 in BR.

5 Ž .5 rq2PROPOSITION 2.1. For r G 1 suppose that E X y m u is continuousu 1
Ž .as a function of u g C compact. Assume also that for all x, p x is continu-u

Ž .ous in u . Then, provided that S u is positive definite on C,

rq1
a y nm u a a 1Ž .

2.4 sup sup 1 q p y q s O .Ž . u u r Žkqr .r2ž / ž / ž /'ž / n n nnugK agL

PROOF. For fixed u we have the desired rate: We use the result of BR and
Ž .the triangle inequality add and subtract q to obtainu rq1

rq1
a y nm u a aŽ .

1 q p y qu u rž / ž /'ž / n nn

rq1 '1 a y nm u f n arn y m uŽ . Ž .Ž .Ž .rq1F O q 1 qŽkqr .r2 k r2 rr2ž / 'ž /n n nn

=
a'w n y m u .Ž .SŽu . ž /ž /n

Ž Žkqr .r2 .The last term is seen to be o 1rn .
To finish, we first note that the BR result holds uniformly over compact

Ž . Ž Ž ² :..sets and the characteristic function f u , t s E exp i t, u is continuousu

Ž .jointly in t and u by the continuity of p x . Fix u g K. For a sufficientlyu 0
small neighborhood U of u , the two t-sets in the proof of BR’s result can beu 00

Ž .chosen so as to satisfy i the expansion for the characteristic function holds
Ž . Ž .with uniformly small remainder and ii on the second t-set, f u , t for

u g U is uniformly bounded away from unity, which is enough for the BRu0

proof. By the Heine]Borel theorem, the proof is complete. I

d Ž .THEOREM 2.1. Let V ; R be compact. Assume that on V, Var X s S uu 1
Ž .satisfies h I F S u F h I for some h , h ) 0, where I is the k = k identity1 d 2 d 1 2 d

Ž .matrix, and that the entries of S u are continuously differentiable. Assume
Ž .also that m u s E X has two continuous derivatives, is locally invertible atu 1

Ž .the interior point u and its d = k derivative matrix J u has rank d at0 m

u s u , where d s k. Then, if the hypotheses of Proposition 2.1 are satisfied0
Ž Ž . .with r replaced by r q 1, where r ) max 0, dr2 y 1, 2r3 d y 4r3 , we have

that

ˆ<2.5 E w u X y n u ; u , u du ª 0Ž . Ž . Ž .Hu 00

as n ª `.
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REMARK. Even though d s k, we distinguish them here so as to empha-
size the role of the sample space and of the parameter space. This permits us
to handle the case d - k conveniently later.

ˆREMARK. Replacing u by u in the target normal and applying Scheffe’s0
Ž .theorem see BR page 6 we observe that the result continues to hold if we

t ˆ y1 ˆ ˆŽ . Ž . Ž .change the variance to J u S u J u . As a consequence, convergencem m

holds with the expectation taken with respect to the mixture density. This
applies to Theorems 2.2, 2.3, 3.1 and 3.2 also. Note that for d s 1, 2, and 3,
four moments are required.

PROOF. We use K to denote a positive constant, not in general the same
from occurrence to occurrence. We proceed in four steps. The first step is to

Ž . < Ž . Ž . <obtain lower bounds on x m X and x m X y m X , and note aU r U
Ž .straightforward upper bound on 2.5 which has three terms. The following

three steps will deal with each term in turn.
Step 1, part 1: We show that there is a K ) 0 so that

Žkqd .r22.6 x m X G Krn x .Ž . Ž . Ž .U r U

' 'Ž Ž Ž ... Ž Ž Ž ...First note that products of the form f n X y m u w n X y m u arei SŽu .
bounded in absolute value by constants for i G 2. We can write

K
m X GŽ .r k r2n

=
n t t y1ˆ ˜ ˜ ˆexp y u y u J u S u J u u y u duŽ .Ž . Ž . Ž . Ž .H m mž /ž /X 2ˆ5 5uyu Fk r n'n

˜ ˆby a Taylor expansion, where u lies on the straight line joining u and u .
˜ t y1 ˜Ž . Ž . Ž .Since J u S u J u is bounded above and bounded away from singular-m m

ˆ'Ž . Ž .ity, the last expression gives 2.6 by using the transformation w s n u y u .
Step 1, part 2: We show that

x m X y m XŽ . Ž .U r

1 1 1 1dr2XF K x k max , q ,Ž .U n Žkqdqr .r2 Žkqrq1.r2 dŽ1r2yd . d Žrq2.ž /ž /n n n n

2.7Ž .

Ž .for any d g 0, 1r2 , where x is the indicator function of the set A. NoteA
that the left-hand side is at most

x p X y q X w u du q x p X y q X w u duŽ . Ž . Ž . Ž . Ž . Ž .H HU u u r U u u r
cU9 U9

K
F x sup w u Vol U9Ž . Ž .U Žkqr .r2nugU 92.8Ž .

q x p X y q X w u duŽ . Ž . Ž .HU u u , rq1
cU9

q x q X y q X w u du .Ž . Ž . Ž .HU u , rq1 ru
cU9
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Ž . Ž X .d r2 Žkqdqr .r2The first term in 2.8 is bounded by x K k rn . To bound theU n
X d' '� < 5 Ž . Ž .5 4second term, write V s u k r n F m u y m u F n r n and V s1 n 0 2

d '� < 5 Ž . Ž .54 Ž .u n r n F m u y m u for some d g 0, 1r2 . By Proposition 2.1, the0
second term is bounded by

ddn 1
x K sup w uŽ .U Žkqrq1.r2ž /' nnugV12.9Ž .

q x K sup w u p X y q X du .Ž . Ž . Ž .HU u u , rq1
VugV 22

Restrict the supremum over the lattice to U and the supremum over u to V2
d' 5 Ž .5 Ž .to get n X y m u G 1 y d n , for n sufficiently large. Proposition 2.1

Žkqrq1.r2 d Žrq2.< Ž . Ž . < Ž .Ž .gives p X y q X is less than Krn 1rn . Using this inu u , rq1
Ž . Ž .2.9 , the second term in 2.8 is less than

ndd 1
K x sup w u q x K sup w uŽ . Ž .U UŽkqrqdq1.r2 Žkqrq1.r2 d Žrq2.n n nu u2.10Ž .

1 1 1
F K x q .U Žkqrq1.r2 dŽ1r2yd . d Žrq2.ž /n n n

Ž .The third term in 2.8 is bounded by

'f n X y m uŽ .Ž .Ž .rq1 '2.11 x w u w n X y m u du ,Ž . Ž . Ž .Ž .Ž .HU SŽu .rr2nVn

c � < 5 Ž . 5 Ž . 4'where U9 ; V is defined by V s u m u y X G c9 y c ln n rn . ThisŽ .n n
follows by using the triangle inequality since the inequalities in U and U9c go

Ž . Ž .in opposite directions. To show 2.7 we control the integral term in 2.11 . It
is bounded by

K n 2
x exp y h c9 y c ln n rnŽ . Ž .Ž .U 1rr2 ž /ž /4n

2.12Ž .
' '= w u f n X y m u w n X y m u du .Ž . Ž . Ž .Ž . Ž .Ž . Ž .H rq1 Ž1r2.SŽu .

The product f w is uniformly bounded by a constant, so the integralrq1 Ž1r2.SŽu .
factor can be absorbed into K. The exponential factor is 1rnŽh1 r4.Ž c9yc.2

, so
Ž .choosing c9 large enough gives 2.7 .

1 Ž .Step 1, part 3: We upper bound the L distance in 2.5 by the sum

w u p X w u q XŽ . Ž . Ž . Ž .u u r
2.13 E y duŽ . Hu0 m X m XŽ . Ž .r

w u q r Xw u q X Ž . Ž .Ž . Ž . uuu r 02.14 q E y duŽ . Hu0 m X m XŽ . Ž .r u r0
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w u q XŽ . Ž .uu r0 ˆ2.15 q E y n u ; u , u du .Ž . Ž .Hu 00 m XŽ .u r0

Ž . Ž .Step 2, part 1: We use 2.6 and 2.7 with d s 1r4 to obtain a lower bound
Ž .for x m X :U

Žkqd .r22.16 x m X G x m X y m X y m X G x Krn ,Ž . Ž . Ž . Ž . Ž .Ž .U U r r U

Ž Ž . Ž . .provided r ) max 0, 1r2 d y 1, 2r3 d y 4r3 .
Ž .Step 2, part 2: Expression 2.13 equals

w u p X w u q XŽ . Ž . Ž . Ž .u u r
c2.17 E x y duŽ . Hu U0 m X m XŽ . Ž .r

w u p X w u q XŽ . Ž . Ž . Ž .u u r
2.18 qE x y du .Ž . Hu U0 m X m XŽ . Ž .r

Ž .For n large enough, the first term in the sum which gives q X dominatesu r
Ž . w Ž .xso that q X is positive everywhere see the proof of 2.6 . As a resultu r

Ž . Ž Ž . Ž . Ž .c2 .17 is upper bounded by E x Hw u p X rm X du qu U u0 cŽ . Ž . Ž . . Ž .Hw u q X rm X du , which is less than P U and so goes to zero. Foru r r u 0
Ž . Ž . Ž . Ž .expression 2.18 we use 2.6 and 2.7 with d s 1r4 as well as the fact that

< Ž . Ž . < Ž . Ž .x H p X y q X w u du is bounded above by the right-hand side of 2.7 .U u u r
Ž . Ž .Now, by adding and subtracting q X rm X we have thatu r

p X q XŽ . Ž .u u r
x w u y duŽ .HU m X m XŽ . Ž .

p X y q XŽ . Ž .u u rF x w u duŽ .HU m XŽ .
2.19Ž .

w u q X m X y m XŽ . Ž . Ž . Ž .u r rq x du .HU m X m XŽ . Ž .r

Ž . Ž .Using 2.16 , the right-hand side of 2.19 can be bounded above by

1 nd r2 1 1dr2Xx K k max , q .Ž .U n rr2 Žrq1.r2 dŽ1r2yd . d Žrq2.ž /ž /n n n n

The first entry of the maximum goes to zero. The second entry is the sum of
1rnŽrq1.r2yd d and 1rnŽrq1.r2qd Žrq2.yd r2, which goes to zero for r )

Ž Ž . . Ž .max 0, dr2 y 1, 2 dr3 y 4r3 . Finally, applying E to 2.19 and its upperu0
Ž . Ž .bound which is nonrandom gives a bound on 2.18 which goes to zero.

Ž .Step 3, part 1: Next we show 2.14 tends to zero. We upper bound it by

q Xq X Ž .Ž . uu ru r 02.20 E x w u y duŽ . Ž .Hu U0 m X m XŽ . Ž .U9 r u r0

w u q XŽ . Ž .u r
2.21 q E xŽ . Hu U0 c m XŽ .U9 r
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w u q XŽ . Ž .uu r02.22 q E x duŽ . Hu U0 c m XŽ .U9 u r0

w u q Xw u q X Ž . Ž .Ž . Ž . uu ru r 0
c2.23 q E x y du .Ž . Hu U0 m X m XŽ . Ž .r u r0

Step 3, part 2: Three of the four terms in the last upper bound are easy to
Ž .control. Term 2.23 tends to zero by the same reasoning as was used for

Ž .2.17 : the triangle inequality allows us to use 2 as an upper bound for the
integral and gives the convergence to zero.

Ž .By reasoning similar to that used to prove 2.6 one can prove
Žkqd .r22.24 x m X G Krn x .Ž . Ž . Ž .U u r U0

Ž . Ž . Ž . Ž .By use of 2.24 and 2.6 , to prove that 2.21 and 2.22 go to zero it is enough
to show

1
2.25 E x q X du s oŽ . Ž .Hu U u r Žkqd .r20 ž /c nU9

and
1

2.26 E x q X du s o .Ž . Ž .Hu U uu r Žkqd .r20 0 ž /c nU9

Ž . Ž .We see that the absolute values of the left-hand sides of 2.25 and 2.26 are
upper bounded by a sum of r terms that may be controlled alike. So, for

Ž . Ž .c9 y c large enough expressions 2.25 and 2.26 can be forced to go to zero at
Ž a .any rate of the form o 1rn for a ) 0.

Ž .Step 3, part 3: For expression 2.20 our technique will be similar to that
Ž . Ž . Ž . Ž .used for 2.18 . By adding and subtracting q X rm X and using 2.6 weuu rr0
Ž .see that 2.20 is upper bounded by

q X y q XŽ . Ž .u r uu r0E x w u duŽ .Hu U0 m XŽ .U9 r

w u q X m X y m XŽ . Ž . Ž . Ž .uu r r u r0 0q E x duHu U0 m X m XŽ . Ž .U9 u r r0

Žkqd .r2F Kn E x w u q X y q X duŽ . Ž . Ž .Hu U u r uu r0 0
U9

qE x m X y m XŽ . Ž .u U r u r0 0

Žkqd .r2F Kn 2 E x w u q X y q X duŽ . Ž . Ž .Hu U u r uu r0 0
U9

qE x w u q X y q X du .Ž . Ž . Ž .Hu U u r uu r0 0cU9

Ž . Ž .The second term in brackets goes to zero by use of 2.25 and 2.26 .
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For the first term, it is enough to show

3rXk q kŽ .n n
2.27 x x q X y q X s O x x ,Ž . Ž . Ž .U U 9 u r uu r U U 9 Žkq1.r20 ž /n

X d'Ž .for then the integration will give a factor of K k r n so that term willn
Ž .tend to zero also. Since f has degree 3 i y 1 and on the intersection of Ui n

X'5 Ž Ž ..5and U9, n X y m u F k q k , so we have that the left-hand side ofn n
Ž .2.27 is bounded above by

r 'K x x f n X y m uŽ .Ž .Ž .U U 9 iÝk r2 Ž iy1.r2n nis1

t y1= exp y nr2 X y m u S u X y m uŽ . Ž . Ž . Ž .Ž . Ž .ž /
y1yexp y nr2 X y m u S u X y m uŽ . Ž . Ž . Ž .Ž . Ž .Ž .0

K x x n 2U U 9 Ž .3 ry1XF k q k X y m uŽ . Ž .n nk r2 ž /2n
y1 y1= S u y S u ,Ž . Ž .0

< yx yy < < <in which we have used e y e F x y y and norm inequalities on
the upper bound resulting from that inequality. The matrix norm takes the
largest eigenvalue. Using the restriction to U and U9 again, we obtain the

Ž X .3Ž ry1. 5 y1Ž . y1Ž .5 k r2
Xbound K x x k q k S u y S u rn . Since all EuclideanU U n n 0

norms are equivalent, we can replace the matrix norm with any norm. We
choose the norm which sums the absolute values of the entries. Each term in
that sum admits a Taylor expansion which can be bounded from above by

X 'Ž .k r n times a positive constant. There are only finitely many constants, son
X X' 'Ž . Ž .taking the maximum gives an upper bound K k r n F K k q k r nn n n

Ž .which finishes the proof of 2.27 .
Ž .Step 4, part 1: In this final step we show that 2.15 goes to zero. We start

Ž .by bounding 2.15 from above by a sum of five terms, two of which are easy.
Our bound is

w u q X w u q XŽ . Ž . Ž . Ž .uu r uu 10 02.28 E x y duŽ . Hu U0 m X m XŽ . Ž .U9 u r u 10 0

w u q XŽ . Ž .uu 10 ˆ2.29 qE x y n u ; u , u duŽ . Ž .Hu U 00 m XŽ .U9 u 10

w u q XŽ . Ž .uu r02.30 qE x duŽ . Hu U0 c m XŽ .U9 u r0
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ˆ2.31 qE x n u ; u , u duŽ . Ž .Hu U 00 cU9

w u q XŽ . Ž .uu 0 ˆc2.32 qE x y n u ; u , u du .Ž . Ž .Hu U 00 m XŽ .u r0

Ž . Ž . Ž . Ž .Step 4, part 2: The term 2.30 is handled like 2.22 and 2.32 like 2.23
Ž .and 2.17 .

Ž .Step 4, part 3: The next easiest term is 2.31 . Since m is invertible on a
5 Ž . Ž .5neighborhood of u for any h ) 0 there is an « ) 0 so that m u y m u -0 0

ˆ ˆ5 5 5 Ž . Ž .5 5 5« « u y u - h and m u y m u - « « u y u - h. For such a choice0 0 0
Ž .of « we write 2.31 as

ˆ2.33 E x n u ; u , u duŽ . Ž .Hu U 00 Ž . Ž .m u ym u )«0

ˆ2.34 q E x n u ; u , u du .Ž . Ž .Hu U 00 XŽ . Ž .«G m u ym u Gk n'0 n

Ž .For 2.34 , restriction to U and to the domain of integration gives that
ˆ5 5u y u F 2h, so we can use a Taylor expansion and the triangle inequality to

obtain

ln n
X˜ ˆ ˆ '< 5=m u u y u G m u y m u G k y k r n s c9 y c ,Ž . Ž . Ž .Ž . Ž . (n n n

˜ ˆfor some u lying on the straight line joining u and u . By the continuity of the
ˆŽ . Ž . Ž .'derivative we have that u y u G K c9 y c ln n rn . Now 2.34 is boundedŽ .

by

n ln n2K exp y K c9 y cŽ .ž / ž /ž /4 n

=
n tˆE x exp y u y uŽ .Hu U ž /0 ž 4

2.35Ž .

t y1 ˆ=J u S u J u u y u du ,Ž . Ž . Ž . Ž .0 0 /
which tends to zero.

Ž .For 2.33 we use a variant of the last argument. We note that local
5 Ž .invertibility implies that given « ) 0 there is an h ) 0 so that m u y

ˆŽ .5 5 5m u ) « « u y u ) h. By restriction to U we have that u and u are0 0 0
ˆ5 5close, so we Taylor expand to get that there is a K ) 0 so that K u y u F0

ˆ' '5 5 Ž .k r n . Again by the triangle inequality, u y u G h y Kk r n G hr2.n n
Ž . Ž .So, in this case we still get a bound much like 2.35 . As a result, 2.33 goes to

zero.
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Ž .Step 4, part 4: Write expression 2.28 as

w u q XŽ . Ž .uu 10E x Hu U0 m XŽ .U 9 u 10

=

y1

'F 2, r w u w n X y m u duŽ . Ž . Ž .Ž .Ž .H SŽu .0w x1 y 1 q F 2, r 1 q du ,Ž .
'� 0w u w n X y m u duŽ . Ž .Ž .Ž .H SŽu .0

r Ž iy1.r2'Ž . Ž Ž Ž ... Ž .where F 2, r s Ý f n X y m u rn . We bound each sum by o 1 .is2 i
Ž X .3Ž iy1.On U and U9 each f is bounded by K k q k , which is of lower orderi n n

than nŽ iy1.r2 and so the summation in the numerator goes to zero. Each term
Ž .in the sum in the denominator is seen to be o 1 by integrating over U9 and

c Ž .U9 , using the lower bound on m X with the last bound on f , andu r i0
Ž .applying the techniques used on the right-hand side of 2.13 .

Ž .Step 4, final part: At last we deal with 2.29 . We bound it by adding and
subtracting

t y1w u exp y nr2 X y m u S u X y m uŽ . Ž . Ž . Ž . Ž .Ž . Ž .ž /0

y1r2dr2 t y1w u 2p nJ u S u J uŽ . Ž . Ž . Ž . Ž .0 0 0 0

and
t y1exp y nr2 X y m u S u X y m uŽ . Ž . Ž . Ž .Ž . Ž .ž /0

.y1r2dr2 t y12p nJ u S u J uŽ . Ž . Ž . Ž .0 0 0

Ž .Our upper bound on 2.29 is now

t y1yŽ n r2.Ž XymŽu .. S Žu .Ž XymŽu ..0w u e duŽ .H2.36Ž .
E x 1 yu U y1r20 dr2 t y12p w u nJ u S u J uŽ . Ž . Ž . Ž . Ž .0 0 0 0

t y1yŽ n r2.Ž XymŽu .. S Žu .Ž XymŽu ..0w u eŽ .
2.37 qE x y 1 duŽ . Hu U y1r20 dr2 t y1w uŽ .U9 0 2p nJ u S u J uŽ . Ž . Ž . Ž .0 0 0

2.38Ž .
y1 t t y1ˆ ˆyŽ n r2.Ž XymŽu ..S Žu .Ž XymŽu .. yŽn r2.Žuyu . J Žu .S Žu .J Žu .Žuyu .0 0 0 0e y e

q E x du .Hu U y1r20 dr2 t y1U9 2p nJ u S u J uŽ . Ž . Ž . Ž .0 0 0

ˆŽWe note that there is a positive definite matrix M so that u y
t t ˜ y1 ˜ ˆ ˆ t ˆ. Ž . Ž . Ž .Ž . Ž . Ž . Ž .u J u S u J u u y u G u y u M u y u . As a result, 2.37 is0

bounded from above by

w u nŽ . td r2 ˆ ˆK sup y 1 E x n exp y u y u M u y u du ,Ž . Ž .Hu U ž /0 ž /w u 2Ž . U9ugU9 0

in which the integral is finite, and by the continuity of w the bound goes to
zero.
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Ž . Ž .For expression 2.38 we use techniques similar to those used for 2.27 .
< yx yy < < <Since e y e F x y y , we obtain the upper bound

2 td r2 y1 y1ˆ ˜ ˜Kn E x n u y u J u S u J u y J u S u J u duŽ . Ž . Ž . Ž .Ž . Ž . Ž .Hu U 0 0 0 00
U9

˜ ˆafter Taylor expansion of m, where u is on the straight line joining u and u .
'Ž . 5 ŽBy reasoning used in the proof that 2.37 goes to zero, we have that n u y

ˆ X 2.5 Ž .u F K k q k . Also since we have restricted to U and U9, the norm of then n
difference of matrices can be controlled by a Taylor expansion.

Ž .Finally, for 2.36 , consider the integral
n t y1x w u exp y X y m u S u X y m u duŽ . Ž . Ž . Ž .Ž . Ž .HU 0ž /ž /2U9

2.39Ž . n t y1q x w u exp y X y m u S u X y m u du .Ž . Ž . Ž . Ž .Ž . Ž .HU 0ž /ž /c 2U9

For a lower bound we drop the second term and Taylor expand m in the first.
Ž .For an upper bound, observe that the second term in 2.39 can be bounded by

a Ž .Krn , where a ) 0 is an increasing function of c9 y c. The first term in 2.39
can be bounded above by Taylor expanding m. Thus, there are functions

Ž . Ž .g , g with g « , g « ª 1 as « ª 0, and on U,1 2 1 2

y1w u exp y nr2 X y m u S u X y m u duŽ . Ž . Ž . Ž . Ž .Ž . Ž .Ž .H 0

g « F F g « .Ž . Ž .1 21r2dr2 t y1w u 2p r nJ u S u J uŽ . Ž . Ž . Ž . Ž .Ž .0 0 0 0

Ž .Using the last pair of inequalities it is seen that 2.36 tends to zero also. I

REMARK. A version of Theorem 2.1 holds for continuous random variables.
Indeed, a version of Proposition 2.1 can be obtained from Theorem 19.2 in BR.
The only extra assumption is that for some p G 1 the pth power of the
characteristic function of X be integrable. Doing this, the proof of Theorem
2.1 here applies to the continuous case also.

Next, we extend Theorem 2.1 to noncompact parameter spaces V. For C
compact we define mixtures

w u w uŽ . Ž .
cm X s p X du and m X s p X du ,Ž . Ž . Ž . Ž .H HC u C uccW C W CŽ . Ž .C C

where W is the prior probability with density w. Again we use local invert-
ibility of m at u . This means there is an open set O containing u so that the0 0

< Ž . crestriction of m to O, m : O ª m O is invertible and that for u g O ,O
Ž . Ž .cm u g m O . Our result is the following.

THEOREM 2.2. Assume the hypotheses of Theorem 2.1, including the lower
bound on r and k s d. Also, assume that for all k components X of XŽ i. 1
the k q d q 1 central moment is uniformly bounded in u , that is,

< Ž . < kqdq1sup E X y m u is finite for i s 1, . . . , k. Then,u g V u Ž i. Ž i.

ˆ<2.40 E w u X y n u ; u , u du ª 0.Ž . Ž . Ž .Hu 00
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PROOF. Let C be a compact set, to be specified shortly. Write the integral
Ž . cin 2.40 as a sum of an integral over C and an integral over C and let
Ž . Ž . < Ž . Ž < .w u s w u rW C . In the integral over C, add and subtract w u X ,CC C

Ž < .apply the triangle inequality and then pull out w u X as a factor in theC
Ž .term which is a difference of posteriors to see that 2.40 is bounded from

above by

w u p XŽ . Ž .C u ˆ2.41 E y n u ; u , u duŽ . Ž .Hu 00 m XŽ .C C

1
2.42 q E 1 yŽ . u0

1 q w u p X du w u p X duŽ . Ž . Ž . Ž .H Hu u
cC C

c c ˆ<2.43 q E W C X q E N C ; u , u .Ž . Ž . Ž .u u 00 0

Ž .By Theorem 2.1, expression 2.41 tends to zero. Since the quantity in
Ž . Ž .absolute value bars in 2.42 is between zero and one, expression 2.42 will

tend to zero if we show that

cH w u p X duŽ . Ž .C u
2.44 ª 0.Ž . Pu0<H w u p X u duŽ . Ž .C

Ž .To prove 2.44 we first show that

Žkqdq1r2.r2
c2.45 P m X n ) p X s o 1 .Ž . Ž . Ž . Ž .ž /u C u0 0

� < 5Ž Ž . Ž ..5 4 Ž .Set C s u m u y m u F d . Now, the left-hand side of 2.45 is less0
than

d
P X y m u )Ž .u 00 ž /2

d
Žkqdq1r2.r2

cq P X y m u F , m X n ) p XŽ . Ž . Ž .u 0 C u0 0ž /2

K
Žkqdq1r2.r2

cF q n w u P x duŽ . Ž .ÝH C u
cn C Ž .xym u Gdr2

kK d
Žkqdq1r2.r2

cF q n w u P X y m u ) duŽ . Ž .ÝH C u Ž i. Ž i.ž /cn 2kK is1

K d
Žkqdq1r2.r2F q n sup P X y m u ) .Ž .u Ž i. Ž i.ž /n 2ku , i

By Markov’s inequality and a well known result bounding the moments
wof sums of independent random variables see Ibragimov and Hasminskii

Ž . x1981 , page 186 , we have that the last term is bounded by
Žkqdq1r2.r2 Žkqdq1.r2 < Ž . < Ž .Kn rn sup E X y m u . Now that 2.45 is estab-i, u u Ž i. Ž i.
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Ž .lished we use it to prove 2.44 . Let « ) 0. By intersecting with the event in
Ž .2.45 and its complement we have

w u p X duŽ . Ž .H u p XŽ .c uC 0P ) «u 0 p XŽ .� 0u0 w u p X du� 0Ž . Ž .H u
C

p Xcm X K Ž .Ž . uC 0 Žkqdq1.r2F P ) q P ) Kn .u uŽkqdq1.r20 0 ž /ž /np X m XŽ . Ž .u C0

Ž . cThe first term is controlled by 2.45 . Intersecting the second term with U
c Ž c.and U gives two terms. The term with U goes to zero since P U ª 0. Onu 0Žkqd .r2Ž . Ž Ž .the term with U, we use m X ) 1rn and note P p X )C u u0 0' .K n ª 0.

Ž .The first term in 2.43 is bounded between zero and one, and dominated
Ž . Ž .by the ratio in 2.44 which goes to zero. The other term in 2.43 is bounded

by

td r2 t y1ˆ ˆKE x n exp yn uyu J u S u J u u y u duŽ . Ž . Ž .Ž . Ž .ˆ Hu � < mŽu .ymŽu . < - d 4 m 0 0 m 0ž /0 0 cC

q KE x .ˆu � < mŽu .ymŽu . < ) d r240 0

Ž .The second term goes to zero by consistency of X for m u . The first term is0
Ž .the same as 2.33 and so goes to zero also. I

If d ) k, then there is a problem of identifiability for u . If d - k the
desired result can be proved by centering at the estimator obtained in the
following way. Let

˜2.46a u s arg min X y m u 9 ,Ž . Ž .
u 9

5 5where ? is the Euclidean norm, and then set

ˆ2.46b u s arg min X y m u 9 ,Ž . Ž . ˜Ž .S u
u 9

˜Ž . Ž .where the norm in 2.46b is defined from the inner product induced by S u .
y1ˆ Ž .When d s k, u reduces to m X . Our result is the following.

THEOREM 2.3. Assume the hypotheses of Theorems 2.1 and 2.2, but that
Ž .k ) d. Then, if the assumptions in Proposition 2.1 hold for r G d, 2.40 holds

ˆ Ž .for the estimator u in 2.46b .
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PROOF. We indicate how to modify the proof in the compact case for d s 1
and general k ) 1; parts which are the same as before are ignored. Exten-
sions to larger values of d can be established by straightforward modifica-
tions of this proof. The case of noncompact parameter spaces can be handled
by using the technique of proof of Theorem 2.2.

ˆŽ .Step 1, part 1: Note that by adding and subtracting m u in the exponent
we obtain

m XŽ .r

k n n2 2ˆ ˆG exp y X y m u y m u y m uŽ .Ž . Ž .H u uk r2 ž / ž /ž 2 2n2.47Ž .
n

y1ˆ ˆy X y m u S u m u y m u du ,Ž . Ž .Ž . Ž .Ž . Ž .ž / /2

5 5 Ž .y1where ? indicates the inner product with respect to S u . On U we haveu

ˆ '5 Ž .5that X y m u F k r n and if we use the implicit function theorem weu n0

ˆŽ . Žcan assert the existence of a solution h to the equation L u s S X yi
i j i jˆ ˆ ˆŽ .. Ž . Ž . Ž . Ž Ž .. Ž .m u m u s u s 0, where u s h X , u s h m u and s u are thei j 0 0 0 0

y1 ˆŽ . 5 .5 5 Ž .5 'entries of S u . As a result u y u F K X y m u F K ln n rn . IfŽ .u0 0 0 0
Xˆ '5 5we cut the domain of integration down to u y u F k r n , then by then

5 5 'triangle inequality u y u F K ln n rn . By Taylor expanding we thenŽ .0
obtain that

2.48 Sy1 u ( 1 q « Sy1 u ,Ž . Ž . Ž . Ž .n 0

Ž .'where « s O ln n rn and ( means the left-hand side is bounded aboveŽ .n
and below by expressions of the form of the right-hand side.

Ž .Next we note that the third term in the exponent of 2.47 is negligible
Ž .compared to the other two, at least when restricted to U: from 2.48 it is

y1ˆ ˆŽ Ž .. Ž . Ž Ž . Ž ..enough to examine n X y m u S u m u y m u . Taylor expanding m at0
2ˆ ˆ ˆ ˆŽ . Ž . 5 Ž .5u and using L u s 0 gives that the third term is Kn u y u X y m u ,u0'ŽŽ . . Ž .which is seen to be O ln n r n . As a result we have on U that m X Gr

2 Žkqd .r2ˆŽ Ž .Ž .5 Ž .5 .K exp y nr2 1 q « X y m u rn .un 0

Step 2, part 1: We use the modified bound of Step 1, part 1, to obtain

K x n 2U ˆx m X G exp y 1 q « X y m uŽ . Ž . Ž . uU n 0Žkqd .r2 ž /ž /2n

=

2dX ˆk exp nr2 1 y « X y m uŽ . Ž . Ž . Ž . un nž /0

1 y .Žrq1yd .r2ž /n

2ˆ5 Ž .5Since n X y m u F c ln n, r can be chosen large enough to ensure thatu 0

the second term in parentheses goes to zero. Indeed, it is enough for r to be
Ž . 2Ž .greater than d y 1 q c 1 y « . That is, if c is small enough, then r G dn

will suffice.
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Ž . Ž .Step 2, part 2: Expression 2.17 is no problem and it is seen that 2.18
goes to zero by noting that

w u p X y q X w u q X m X y m XŽ . Ž . Ž . Ž . Ž . Ž . Ž .u u r u r r
x du q x duH HU Um X m X m XŽ . Ž . Ž .r

k d nŽkqd .r2
nF K x ?U Žkqrqd .r2 2n� ˆexp y nr2 1 q « X y m uŽ . Ž . Ž . unž /0

kX d nŽkqd .r2
nq ,Žkqrq1. 2n 0ˆexp y nr2 1 q « X y m uŽ . Ž . Ž . unž /0

Ž . 2Ž .which goes to zero for r ) d y 1 q c 1 y « , that is, r G d for c small.n
Ž . Ž .Step 3, part 2: Showing that analogs of 2.21 and 2.22 go to zero can be

readily done. It is enough to show that

nŽkqd .r2

2.49a E x q X du ª 0,Ž . Ž .Hu U u r 20
U9 ˆexp y nr2 1 q « X y m uŽ . Ž . Ž . unž /0

nŽkqd .r2

2.49b E x q X du ª 0,Ž . Ž .Hu U u r 20 0
U9 ˆexp y nr2 X y m uŽ . Ž . už /0

2 Žkqd .r2ˆŽ . Ž . Ž Ž .5 Ž .5 .since the analog to 2.24 , m X G K exp y nr2 X y m u rnuu r 00

can be derived by the same technique as in the modified Step 1, part 1.
2 2ˆ5 Ž .5Now, for both cases it is enough to note that on U, n X y m u F c ln n,u 0

and one obtains from the other part of either of the integrands bounds of the
form nyK Žc9yc.2

. It is enough to choose c9 y c large enough.
Step 3, part 3: It is enough to show

Žkqd .r2Kn 2 E x w u q X q X duŽ . Ž . Ž .Hu U u r uu r0 0ž U9

=
n 2ˆexp 1 q « X y m uŽ . Ž . un 0ž /ž /2

qE x w u q X y q X duŽ . Ž . Ž .Hu U u r uu r0 0cU9

2.50Ž .

n 2ˆ=exp 1 q « X y m uŽ . Ž . un 0ž /ž / /2

Ž . Ž .goes to zero. By earlier reasoning in Step 3, part 3, 2.49a and 2.49b can be
Ž .used to control the second term in 2.50 . For the first term we observe that

ŽŽ . 2 .the extra exponential factor is bounded above by exp 1 q « c ln n Fn
nŽ1q« n.c

2 F n3c2 r2 F n1r4, for n large enough and c small enough. The earlier
3r 1r4'Ž .proof of this part gave a bound of the form K ln n r n so the extra n

does not alter the convergence to zero.
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Step 4, part 2: Use the result from the modified version of Step 3, part 2.
Step 4, part 4: It is enough to show that

'Ž .3 iy1X w u w n X y m u duŽ . Ž .Ž .Ž .H SŽu .0K k q kŽ .n n U9xUŽ iy1.r2n 'w u w n X y m u duŽ . Ž .Ž .Ž .H SŽu .0

Žkqd .r2Kn ' 'q x w u f n X y m u w n X y m u duŽ . Ž . Ž .Ž . Ž .Ž . Ž .HU i SŽu .Ž iy1.r2 0cn U9

n
ˆ=exp X y m uŽ . u0ž /ž /2

2 2ˆ5 Ž .5goes to zero. This is obvious for the first term. Since n X y m u F c ln n,
the second term can be controlled by choosing c9 large enough.

Ž .Step 4, final part: To control the analog of 2.29 we add and subtract

22 ˆw u exp y nr2 X y m u exp nr2 X y m uŽ . Ž . Ž . Ž . Ž .u už / ž /0 0

y1r2dr2 t y1w u 2p nJ u S u J uŽ . Ž . Ž . Ž . Ž .0 0 0 0

and

22 ˆexp y nr2 X y m u exp nr2 X y m uŽ . Ž . Ž . Ž .u už / ž /0 0

y1r2dr2 t y12p nJ u S u J uŽ . Ž . Ž . Ž .0 0 0

so that we must control

2 2ˆŽn r2.5 XymŽu .5 yŽn r2.5 XymŽu .5u u0 0e w u e duŽ .H
2.51 E x 1 yŽ . u U y1r20 dr2 t y12p w u nJ u S u J uŽ . Ž . Ž . Ž . Ž .0 0 0 0

2 2ˆyŽ n r2.5 XymŽu .5 Žn r2.5 XymŽu .5u u0 0w u e eŽ .
2.52 qE x y 1 duŽ . Hu U dr2 y1r20 t y1w uŽ . < <U9 2p nJ u S u J uŽ . Ž . Ž . Ž .0 0 0 0

2.53Ž .
2 2 t t 1ˆ ˆ ˆŽn r2.5 XymŽu .5 yŽn r2.5 XymŽu .5 yŽn r2.Žuyu . J Žu .Sy Žu .J Žu .Žuyu .u u 0 0 00 0e e ye

qE x du ,Hu U y1r20 dr2 t y1U9 2p nJ u S u J uŽ . Ž . Ž . Ž .0 0 0

Ž . Ž . Ž . Ž .the analogs of 2.36 , 2.37 and 2.38 . For 2.52 we use the fact that

2 22 ˆ ˆn X y m u s n X y m u q n m u y m uŽ . Ž .Ž . Ž .u u0 0

a
ln nŽ .

q O ž /'n

2.54Ž .
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d r2 ˆŽ . Ž Ž .5 Ž .so as to obtain the upper bound o 1 E x H n exp y nr2 m u yu U U 90
Ž .5 2 . wm u du , which goes to zero since the integral gives a constant. Theu0

Ž . x Ž . Ž .modulus of continuity goes the o 1 . For 2.53 we use 2.54 so as to reduce it
Ž . Žto the analog of 2.29 , as in the final step of Part 4 before. Choose c ) 0

.small enough.
Ž .For the last term 2.51 , Laplace integration gives the desired convergence

Ž .to zero, by use of 2.54 again. I

3. Nonidentically distributed random variables. To introduce our
approximations, we require some notation. We denote the sum of the first n

nŽ . n nŽ . nŽ . n Ž .outcomes by S X s Ý X , with mean m u s E S X s Ý m u ,is1 j u js1 j
Ž . n Ž . n Ž . Ž .where m u s E X . Analogously, we write S u s Ý S u , where S ujj u j js1 js1 j

n nŽ . Ž . Ž .s Var X . The average mean is m s m u s 1rn m u ; the average vari-u j
n nŽ . Ž . Ž . Ž . Ž .ance is S s S u s 1rn S u . We write J u s =m u to mean them, n n

wk = d Jacobian matrix of first derivatives of m. The jth column is
ŽŽ . Ž . Ž . Ž .. xru m u , . . . , ru m u , where m is the ith component of m. Toj 1 j k i
define the location of the limiting normal, we require the following.

² Ž .: <`DEFINITION 3.1. A sequence of functions f u is locally invertiblens1n
at u if and only if there is a neighborhood N of u so that for all n,0 u 00

< Ž . c Ž . Ž .cf : N ª f N is invertible, for u g N we have that f u g f NNn u n u u n n uu 0 0 0 00
` Ž . Ž .and the set F f N contains an open set around lim f u , assumedns1 n u nª` n 00

to exist.

Now, the target normal is

1r2y1nJ u S u J uŽ . Ž . Ž .m , n 0 0 m , n 0ˆn u ; u , u sŽ .0 dr22pŽ .3.1Ž .
n

y1 y1ˆ ˆ=exp y u y u J u S u J u y u ,Ž . Ž .Ž . Ž .m , n 0 0 m , nž /ž /2

n y1 nˆ Ž . Ž .where u s m X near u since m is assumed to be locally invertible at0
n y1Ž .u . Note that m is well defined only when k and d are equal.0

As in Section 2, we continue to write

nr 'f n X y m uŽ .l Ž .ž /i n'3.2 q X s w n X y m u ,Ž . Ž . Ž .Ž .Ý ž /u r SŽu .k r2 Ž iy1.r2n nis1

Ž .for the r term approximation to p X , where f ' 1 and for i G 2, f is au 1 i
polynomial of degree at most 3r in k variables and w is theSŽu .

Ž Ž .. Ž .Normal 0, S u density. A variant on 3.2 is

nr 'l f n X y m uŽ .Ž .Ž .i n'3.3 q X s w n X y m uŽ . Ž . Ž .Ž .Ž .Ýuu r n SŽu .k r2 Ž iy1.r20 0n nis1
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in which the variance matrix is evaluated at u . Mixtures of the densities in0
Ž . Ž . Ž . Ž .3.2 and 3.3 with respect to u are denoted m X and m X , respec-r u r0

tively.
Our first result is an inid version of Proposition 2.1; a proof is in the

Appendix.

PROPOSITION 3.1. Suppose the characteristic functions for the X ’s arei
Ž .jointly continuous in t, u uniformly in i. Then,

rq1na y m u a a 1Ž .
3.4 sup sup 1 q p y q s O .Ž . u u r Žkqr .r2ž / ž / ž /'ž / n n nnugC agL

Xn ˆ '� < 5 Ž . Ž .5 4 � < 5 Ž .Now write U s X m u y m u F k r n and U s u m u yn n n 0 n n n
X X' ' 'Ž .5 4 5 5m u F k r n , where k r n , k n ª 0 and ? is a norm on L embed-n 0 n n n

ded in R k. To permit Taylor expansions we make the following definition.

² Ž .: <`DEFINITION 3.2. A sequence of functions g u is uniformlyns1n
Ž .Taylor expandable at u if and only if 1 each g is continuously differen-0 n
Ž .tiable on an open set N containing u ; 2 there are a , b ) 0 so that for allu 00

5 Ž .5n and all u g N , b ) =g u ) a , where =g is the Jacobian matrix ofu n n0

first derivatives of the components of g with respect to the components of u ;n
Ž .3 on N , =g has maximal rank.u n0

X ˆ5 5The defining conditions in U and U can be expressed as u y u Fn n 0
X X' ' ' '5 5k ra n and u y u F k ra n . We set k s c ln n and k s c9 ln n ,n 0 n n n

where c9, c ) 0 and c9 y c ) 0.

THEOREM 3.1. Assume the hypotheses of Proposition 3.1 are satisfied with
Ž . Ž . .r q 1, where r ) max 0, dr2 y 1, 2r3 d y 4r3 , and that w is positive at u .0

` `y1 t y1² Ž .: < ² Ž .: < ² Ž . Ž . Ž .:Assume also that m u , S u and J u S u J uns1 ns1n m , n 0 m, n
`² Ž .: <are uniformly Taylor expandable and that m u is locally invertible atns1n

u . Finally, suppose there is a neighborhood N of u and a , b ) 0 so that0 u 00

for u , u 9 g N we have thatu0

y13.5 bI G J u S u 9 J u G aI ,Ž . Ž . Ž . Ž .d m , n m , n d

uniformly in n. Then if V is compact we have that

ˆ<3.6 E w u X y n u ; u , u du ª 0,Ž . Ž . Ž .Hu 00
V

ˆŽ . Ž .as n ª `, where n u ; u , u is as in 3.1 .0

PROOF. In reviewing the proof of Theorem 2.1, it can be seen that most of
the steps go through with only cosmetic changes. For instance, we use the

Ž .inid forms of m X and m as defined in this section rather than their iidr u r0

Ž . Ž . Ž . Ž . Ž . Ž .analogs. Also, we replace m u , S u and J u by m u , S u and J u .m n m , n
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There are, however, steps where the modifications are not solely a matter of
notation. They are Step 1, part 1, Step 3, part 3 and Step 4, parts 3 and 5. It
will be seen that they follow largely by the uniform Taylor expandability and
local invertibility assumptions on sequences of functions.

Ž .For Step 1, part 1, 3.5 ensures that the last inequality in proving the
Ž .extension to 3.6 in Section 2 continues to hold. Part 2 relies on the

X 'Ž . < Ž Žproperties of 3.2 , U and U as before. The product f n X yn n i'Ž ... < Ž Ž Ž ...m u w n X y m u remains bounded by a constant, for n largen SŽu . n
enough and u in a compact set. Part 3 only requires cosmetic changes.

Step 2 continues to hold, subject to cosmetic changes, once Step 1 is
Ž c.extended. Part 1 is obvious. Part 2 only requires that one observes P Uu0

tends to zero.
`y1² Ž .: <Step 3 uses the assumptions on S u . Part 1 is unchanged andns1

part 2 follows by the same tchniques as before. The main difference occurs in
`y1² Ž .: <Part 3: the uniform Taylor expandability of S u gives the appropri-ns1

Ž .ate analog of 2.20 .
Step 4 requires a bit more. While parts 1 and 2 continue to hold, part 3

requires the local invertibility and uniform Taylor expandability of
`² Ž .: < Ž .m u to ensure the inid analog of 2.31 goes to zero by straightfor-ns1n

ward modifications of the earlier technique. Part 4 is again cosmetic. Part 5,
Ž .the last one, requires that the Laplace integration in 2.36 and the bounding

Ž .of the difference in the exponents in 2.38 be generalized. The latter is
`t y1² Ž . Ž . Ž .: <covered by the uniform Taylor expandability of J u S u J u .ns1m , n 0 m , n

w Ž .The former follows as before. One observes that 3.5 controls the analog to
Ž . x2.37 . So, the earlier proof has been adapted to give a proof of Theorem 3.1.

I

It is of interest to generalize one step further so as to obtain a result in the
case of noncompact parameter spaces. Our technique of proof will be to
reduce the result to the compact case. Thus we define two mixtures, one over
a compact set C, the other over its complement. They are

w u w uŽ . Ž .
cm X s p X du and m X s p X du ,Ž . Ž . Ž . Ž .H HC u C uccW C W CŽ . Ž .C C

where W is the probability with density w. Our result is Theorem 3.2.

THEOREM 3.2. Assume the hypotheses of Theorem 3.1. In addition, as-
` y1Ž Ž Ž . ..sume that for some d ) 0, F m b m u , d contains a nonvoid open setns1 n 0

around u and that for each X and for all components X , j s 1, . . . , k, of0 i iŽ j.
X the central moments of order k q d q 1 are uniformly bounded in u , thati

k < Ž . < < Ž < .is, sup sup E X y m u - `. Then we have that E H w u X yu , i js1 u iŽ j. iŽ j. u 0

ˆ ˆŽ . < Ž . Ž .n u ; u , u du ª 0, where n u ; u , u is as in 3.1 .0 0

PROOF. The structure and techniques of the proof of Theorem 2.2 continue
Ž . Ž .to be valid. It is enough to deal with the inid analogs of 2.37 , 2.38 and

Ž . Ž .2.39 in Section 2. The inid analog of expression 2.37 goes to zero by



B. CLARKE AND J. K. GHOSH2136

Ž . Ž .Theorem 3.1. The remaining analogous quantities 2.38 and 2.39 go to zero
provided that

w u p X duŽ . Ž .H u
cC3.7 ª 0,Ž . Pu0

w u p X duŽ . Ž .H u
C

in the inid case. Again, it is enough to show that

ŽkqdqŽ1r2..r2
c3.8 P m X n ) p X s o 1 .Ž . Ž . Ž . Ž .ž /u C u0 0

Ž .We can then multiply and divide the left-hand side of 3.7 by p andu0
Ž .intersect with the event in 3.8 and its complement, as in the proof of

Theorem 2.2.
` �Choose C to be compact with nonvoid interior, contained in F u :ns1

5 Ž . Ž .5 4 5 Ž . Ž .5m u y m u - d . On C we have that m u y m u - d , so we mayn n 0 n 0
Ž .upper bound 3.8 by

P X y m u ) dr2Ž .ž /u n 00

q P X y m u - dr2,Ž .žu n 00
3.9Ž .

ŽkqdqŽ1r2.r2.
cm X exp n G p X .Ž . Ž . Ž . /C u 0

Ž . Ž .The first term in 3.9 is of O 1rn . The second term tends to zero by the
same technique as in the proof of Theorem 2.2. I

We remark that under a somewhat messy list of assumptions these results
can be extended to the case that d - k.

4. Implications for testing independence of test items. We use
Proposition 3.1 and Theorem 3.1 to obtain a result which has implications for
educational testing. We give conditions under which educational tests have a

Ž .property called asymptotic covariance given the sum is negative ACSN .
Ž .ACSN is a variant of covariance given the sum is negative CSN used by

Ž .Junker 1993 . Both ACSN and CSN express the idea that conditional on an
examinee’s score, the examinee’s performance on different test questions

Ž .should be uncorrelated. Specifically, in Junker 1993 , the CSN condition
Ž < .Cov X , X X F 0, for i / j, is studied as a verifiable condition that can bei j

used to imply unidimensionality and local asymptotic discrimination}two
main hypotheses of educational testing.

ACSN is useful for two reasons. The first is that one can base a test of the
Ž < .independence of items i and j on the convergence of Cov X , X X to ai j

nonpositive number. The other is that it can be used to obtain a partial
converse to a characterization result for tests which satisfy strict unidimen-
sionality and are locally asymptotically discriminating; for definitions, see
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Ž .Junker 1993 . Stating what exactly the test is and proving the characteriza-
tion are of a specialized nature which we do elsewhere.

Ž < n.We begin with a lemma to control the difference between p X S andu i
Ž . np X . In the proof we use Proposition 3.1 for the density of S and for theu i

density of Sn y X . We denote their one-term normal approximations byi
Ž Ž .. Ž .q s q and q s q . For brevity we write S s 1r n y 1 Ý S u . Inu i u n i j/ i jn i

addition, we assume that the X ’s take values in a finite range, that theiri
variances are uniformly bounded above and below by constant multiples of

Ž .the d = d identity matrix and that the set U is reexpressed as U u sn n, s' '� < Ž . < 4s: n srn y m u F c ln n . Letting x denote a fixed value of X we havei
the following.

LEMMA 4.1. Assume the hypotheses of Proposition 3.1 hold on a compact
set C for r s 1. Then there is an j ) 0 so that

nP S y X s s y x 1Ž .u i
4.1 sup sup y 1 x s O .Ž . U Žu . jn ,s ž /P S s s nŽ .sugC u n

Ž .PROOF. By Proposition 3.1 we have that P S y X s s y x s q q Tu n i i i
Ž .and P S s s s q q T, where the T and T are error terms from the r s 1u n i

< < < < Ž Žkq1.r2 .term normal approximation satisfying sup T , sup T s O 1rn ,syx i s
uniformly for u g C.

Ž .Now, consider the left-hand side of 4.1 for fixed u . Add and subtract q rqi
and use the triangle inequality to obtain the upper bound

q q T q qi i i i
4.2a, b y x q y 1 x .Ž . U Žu . U Žu .n , s n , sq q T q q

Ž .Apart from xU , expression 4.2a is, after adding and subtracting qT,n , sŽu .

bounded from above by

q q T q y q q q T 1 1Ž . Ž .i i i s O Žkq1.r2ž /q q q T q q TnŽ .
4.3Ž .

1 q y qŽ .iq O .Žkq1.r2ž / q q q Tn Ž .

Ž . Ž Žkq« .r2 .On U u we have that there is an « ) 0 so that q, q q T G O 1rn .n, s
In fact, « may be chosen as small as desired by using small enough c in the

Ž . Ž Ž«y1.r2 .definition of U . Now, we upper bound 4.3 by O n qn , s
Ž Žky1q2 « .r2 . < < Ž . < <O n q y q . Apart from x expression 4.2b is q y q rq,i U in , sŽu .

Ž Žkq« .r2 . < < Ž .which is bounded from above by O n q y q . So, 4.2 is bounded fromi
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< <above by the sum of the last two upper bounds. Since q y q , appears in bothi
Ž .of these bounds, we bound it. Let m s Ý m u . By adding and subtractingi j/ i j

s y x m s y x mi iy1r2 y1< <S exp y n y 1 y S y ,Ž . iž / ž /ž /n y 1 n y 1 n y 1 n y 1

we have that

K s sy1r2 n y1 n< < < <q y q F S exp yn y m u S y m uŽ . Ž .i k r2 ž / ž /ž /n nn
s y x m s y x mi iy1yexp y n y 1 y S yŽ . iž / ž /ž /n y 1 n y 1 n y 1 n y 1

4.4Ž .
K y1r2 y1r2< < < <q S y Sik r2n

s y x m s y x mi iy1= exp y n y 1 y S y .Ž . iž / ž /ž /n y 1 n y 1 n y 1 n y 1

Ž . Ž yk r2 . < < Ž Žky1q2 « .r2 .Expression 4.4 is clearly O n , so q y q O n tends toi
zero, provided that we choose « small enough. It remains to show that
< < Ž Žkq« .r2 .q y q O n goes to zero. This requires that we obtain a faster rate ofi

Ž .convergence to zero for 4.4 .
y1r2 y1r25 < < < < Ž . < <First note that S y S s O 1rn . This follows by noting that Si

< <and S are controlled by the hypotheses on the variances of the X ’s. Indeed,i i
1r2 1r2< < < <take a common denominator, multiply and divide by S q S , boundi

< <the denominator from below and remove and bound the common factor S toi
y15 < < ŽŽ . .obtain the bound K S S y 1 . Apply the identity S s n y 1 rn S qi i

Ž . <ŽŽ . . <1rn S , add and subtract n y 1 rn I and use the triangle inequality.i d
Ž . Ž .One term is O 1rn immediately; the other term is seen to be O 1rn by

Taylor expanding the determinant function at the identity.
Ž . < < yxNow if we use 4.4 to bound q y q , we can note that e F 1, for x G 0 soi

Ž 1y« r2 .that one of the resulting terms goes to zero at rate O 1rn . The other
Ž .term is bounded above on U byn, s

s s
« r2 n y1 nO n exp yn y m u S y m uŽ . Ž . Ž .ž / ž /ž /n n

s y x m s y x mi iy1yexp y n y 1 y S y .Ž . iž / ž /ž /n y 1 n y 1 n y 1 n y 1
y1r2< <Since « can be made arbitrarily small and S is bounded by assumption,

< yx yy < < < Ž .we can use the fact that e y e F x y y to see that, on U u , it isn, s
enough to show

s s
n y1 nn y m u S y m uŽ . Ž .ž / ž /n n

s y x m s y x m 1i iy1y n y 1 y S y s o ,Ž . i jž / ž / ž /n y 1 n y 1 n y 1 n y 1 n

4.5Ž .
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for some j ) 0. By straightforward but tedious manipulations we have that,
Ž .on U u ,n, s

ln n ln n 12< < < <O q m y x O q m y x O q O ln nŽ .i iž / ž / ž /n n n

< < 2 < < 2m y x ln n m y xi iy1 y15 5q S y S q O qi 2ž /n n n

4.6Ž .

Ž . w <Ž . Žis an upper bound on the right-hand side of 4.5 . Derive that s y x r n y
. Ž . < 2 ŽŽ . < < 2 2 . Ž . x1 y m r n y 1 is less than K ln n rn q m y x rn on U u . Thei i n, s

Ž . Ž .matrix norm in the fifth term in 4.6 is seen to be O 1rn . Consequently,
rearranging gives

ln n ln n 12< < < <O q m y x O q m y x O(i iž / ž /ž /n n n
4.7Ž .

12q m y x O ,Ž .i 2ž /n
Ž . Ž .as an upper bound on the left-hand side of 4.5 , on U u . Now, expressionn, s

Ž .4.5 holds. The uniformity over C is clear. I

We use the technical result in Lemma 4.1 to prove Proposition 4.1, to see
Ž < .that E X X, u is close to the full expectation when the X ’s assume finitelyi i

many values.

nPROPOSITION 4.1. Assume the hypotheses of Lemma 4.1. Let X s S rn be
Ž .an element of U u . Then there is an h ) 0 so that as n increases,n, s

1
< <4.8 sup sup E X X , u y E X u x s O .Ž . Ž .Ž .i i U Žu . hn ž /n nugC S

Ž .PROOF. Note that the left-hand side of 4.8 is
n<S x P x S y S x P XŽ .Ž .i u i i u i

nP S y X s s y xŽ .u i i
<F S x P x u y 1 .Ž .i i nP S s sŽ .u

4.9Ž .

For each of the finitely many values x , the quantity in absolute value barsi
Ž .on the right-hand side of 4.9 is controlled by the Lemma 4.1, so the

proposition is proved. I

Finally, we state the main result of this section.

THEOREM 4.1. If the hypotheses of Proposition 4.1 and Theorem 3.2 are
satisfied, then

< < <4.10 Cov E X X , u , E X X , u X ª 0.Ž . Ž . ž /ž /i j Pu0
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PROOF. Note that

< < <Cov E X X , u , E X X , u XŽ . Ž .Ž .i i

< < <4.11a s x E X u , X E X u , X w u X duŽ . Ž .Ž . Ž .H U i i
Ž .B u , «0

< < <4.11b q x E X u , X E X u , X w u X duŽ . Ž .Ž .H ž /U i j
cŽ .B u , «0

< < <c4.11c q x E X u , X E X u , X w u X duŽ . Ž .Ž .H ž /U i j

< <4.12a y x E X u , X w u X duŽ . Ž .Ž .H U iž Ž .B u , «0

< <4.12b q x E X u , X w u X duŽ . Ž .Ž .H U i
cŽ .B u , «0

< <c4.12c q x E X u , X w u X duŽ . Ž .Ž .H U i /
< <4.13a = x E X u , X w u X duŽ . Ž .H ž /U jž Ž .B u , «0

< <4.13b q x E X u , X w u X duŽ . Ž .Ž .H U i
cŽ .B u , «0

< <c4.13c q x E X u , X w u X du .Ž . Ž .H ž /U j /
Ž . Ž . Ž .For terms 4.11a , 4.12a and 4.13a we use Proposition 4.1 to approxi-

Ž . Ž .mate the integrands with vanishing error. For terms 4.11b , 4.12b and
Ž .4.13b we use the fact that X , X and x are bounded. Thus their condi-i j U
tional expectations are bounded so the concentration of the posterior forces
them to zero.

Ž . Ž . Ž .It remains to deal with terms 4.11c , 4.12c and 4.13c . We use the local
nŽ . Ž .invertibility of m u : Since S u is bounded above and below, we have that

c ˆ5 5 'there is a M9 so that on U , u y u G M9 ln n rn . Also, by the centralŽ .
ˆ5 5limit theorem we have that, under u , the probability of the set u y u F0 0'M ln n rn tends to unity for any M ) 0. By the boundedness of theŽ .

integrands and the fact that the inequalities go in opposite directions we can
Ž . Ž . Ž .control 4.11c , 4.12c and 4.13c .

Ž . 1For instance, 4.13c is controlled in L by

< <cE x E X u , X w u X duŽ .H ž /u U j0

<cF K E x x w u X duŽ .ˆ HŽ . 4u �5uyu 5 F M ln n rn U'0 0ž
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<cqE x x w u X duŽ .ˆ HŽ . 4u �5uyu 5 ) M ln n rn U'0 0 /
<F K E x x w u X du q o 1Ž .Ž .ˆ HŽ . 4u �5uyu 5 F M ln n rn �5uyu 5 G ŽMyM 9.'0 0 0ž /Ž . 4ln n rn'

in which the integral in the last expression goes to zero by the L1 asymptotic
Ž .normality of the posterior, provided M y M9 is large enough. Thus 4.13c

Ž . Ž .goes to zero in P probability. Terms 4.11c and 4.12c are similar. Iu0

COROLLARY TO THEOREM 4.1. Assume the hypotheses of Theorem 3.1. If, in
addition, the densities of the X ’s are log-concave, then we have, for any fixedi
u and « ) 0, that0

<4.14 P Cov X , X X G « ª 0.Ž . ž /ž /u i j0

wŽ . xPROOF. By Junker’s identity, see Junker 1993 , Section 4 we have that

< < <Cov X , X X s E Cov X , X X , u Xž / ž /ž /i j i j
4.15a, bŽ .

< < <q Cov E X X , u , E X X , u X .Ž . ž /ž /i j

Ž . wBy Theorem 32.8 in Joag-dev and Proschan 1983 see also Theorem 4.1 in
Ž .x Ž . Ž .Junker 1993 , 4.15a is nonpositive. By Theorem 4.1, expression 4.15b

Ž .converges to zero in P -probability. Thus, 4.14 follows. Iu0

Ž .Appendix. To obtain Proposition 3.1, we use characteristic function cf
Ž . Ž Ž ..arguments. Write the cf of X as f u , t s E exp i t, X . Since the X ’sj j u j j

take values in a common lattice, these cf ’s have a common fundamental
domain FF *. Central to the statement and proof of the result is a proper

� k 5 5 4subset E of FF *, defined by E s t g R : t F j , where j is a constant. Let1 1
C be a compact set in the parameter space. We require that j satisfies the
following:

'Ž .ASSUMPTION 1. i On n E we can use the expansion given in Theorem1
9.9 of BR modified in the same way as Theorem 9.12 of BR.

'Ž .ii For t g n E we have that1

y1r2nS uŽ .n
sup f u , y 1 F 1r2.j 'ž /njs1

Ž . Ž . < Ž . <iii For d u s sup sup f u , t , we have that d sj g N t g FF *yE Žu . j C1
Ž .sup d u - 1.u g C
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ASSUMPTION 2. For r G 1 suppose that on C,

n 5 5 rq2g u s sup 1rn Ý E XŽ . Ž .n js1 u j

exists and is bounded.

Ž .ASSUMPTION 3. We have that, on C, h I F S u F h I for some h , h ) 01 d 2 d 1 2
and all n.

Ž .Assumptions 1]3 hold if the f ’s are jointly continuous in t, u , uniformlyj
in j. This is the case in the Rasch model and in the generalisation of that

Ž .model considered by Tsutakawa and Johnson 1990 and Tsutakawa and
Ž .Soltys 1990 . More generally, suppose X is distributed according to ai

Ž .probability function p x , u , a , where the dependence on i is only in thei i
Ž . Ž .third argument. Then, Assumptions 1]3 hold if i p x , u , a is a continuousi

Ž . Ž .function of u , a , which ranges over a fixed compact set; ii the moments
5 5 rq2 Ž .E X are continuous and finite for u , a in the compact set; andŽu ,a .

Ž . Ž .iii for some positive constants h and h , the variance matrix S u , a is1 2
Ž .continuous and satisfies h I F S u , a F h I on the compact set. For gener-1 d 2 d

ality, we use Assumptions 1]3.
First we show that

rq1na y m u a a 1Ž .
sup sup 1 q p y q s o .u u r Žkqry1.r2ž / ž / ž /'ž / n n nnugK agL

n ˜n n nŽ . Ž . Ž . Ž Ž .The cf of S X is f u , t s Ł f u , t and the cf of Y s S X yjs1 j n
n n n n˜' ' 'Ž .. Ž . Ž . Ž Ž Ž ...m u r n is f u , t s f u , tr n exp yi tr n , m u . By the inversion

n k ˜ yi Ž t, j .Ž Ž . . Ž Ž . . Ž .formula we have P S X s j s lr 2p H f u , t e dt. Using t sFF *'t9r n we obtain

l 1 j y mn uŽ .
nP S X s j s f u , t exp yi t , dt ,Ž . Ž .Ž . Hu k k r2 ž /ž /'n nn FF *'2pŽ .

n n'Ž .Ž Ž . .from which we see for Y s 1r n S X y nm thatn

< <bl yiŽ .
b b nY P Y s D f u , t exp yi t , Y dt ,Ž .Ž . Ž .Ž .Hnj u nj njk k r2 n FF *'2p nŽ .

Ž . < <for vectors b s b , . . . , b , where b G 0 are integers summing to b F r q1 k i
b Ž . b1 Ž . bk2 and D denotes the differentiation operator D , . . . , D . Vectorst t1 k

raised to powers b mean that each entry in the vector is raised to the
corresponding entry in b.

Ž . Ž .Denote the Fourier transform of q X by q t . Then,˜u r u r

< <bl yiŽ .
b bY q Y s D q t exp yi t , Y dt ,Ž .˜Ž . Ž .Ž .Hnj u r nj u r njk k r2 kR2p nŽ .
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r yŽ jy1.r2 ˜ y5 t 5 2 r2 ˜Ž . Ž � 4. Ž � 4.where q t s Ý n P it: x e . The P it: x ’s are polyno-ũ r js1 j n j n

mials with coefficients depending on cumulants x . Now we have the uppern

bound
bY p Y y q YŽ . Ž .Ž .nj u nj u r nj

K
b nF D f u , t y q t dtŽ . Ž .Ž .˜H u rk r2n n E' 1

A.1Ž .

b n bq D f u , t dt q D q t dt .Ž . Ž .˜H H u r
kn FF *y n E R y n E' ' '1 1

'Since the domain of integration excludes a ball with radius increasing as n ,
the presence of the exponential factor implies that the last integral tends to

Ž yn r 9.zero at rate O e for some r 9 G 0. The middle integral tends to zero at an
nŽ .exponential rate also: After differentiating f u , t and observing that the

exponential factor has norm 1, one can transform back to FF * y E . The1
˜ nŽ . Ž .product f u , t can be bounded from above by O d , in which d - 1.K K

Ž .The first integral in A.1 requires Theorem 9.12 in BR, which is based on
Theorems 9.9 and 9.10, also in BR. Examination of the proofs of those
theorems shows that our assumptions give an upper bound for the integral of

Ž rr2 . Ž . Ž .order o 1rn uniformly in u . Now A.1 gives 3.4 by the same triangle
inequality argument as was used in the proof of Proposition 2.1. I

Ž .We can dispense with Assumption 1 i by making use of the other assump-
Ž .tions with Theorem 9.11 modified as in Theorem 9.12 in BR and Lemma

14.3 in BR.
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