Cumulative Robustness of the Posterior in
Exponential Scale Families
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For scale parameters in exponential families one can evaluate the relative entropy
between a fixed posterior and a deviation from it as a cumulative measure of robustness.
The deviated posterior is formed by perturbing the prior, model, and data set in the
direction of maximal increase of the relative entropy. A large value for this relative
entropy may indicate a problem with the modeling strategy. As we see in an example,
the converse need not hold.

In addition, the relative contributions of the prior, model, and data to the cumulative
robustness can be identified. Computational results suggest that for good modeling most
of the sensitivity of the posterior should be attributable to the data. However, this must
be qualified by an examination of the directions in which the prior, model, and data
deviate individually along the overall direction of most rapid change.

We demonstrate our methods in the context of two parametric models in exponential
form, each with its own class of conjugate priors. In each case, one parameter is treated
as a model index, so we do not estimate it. In the first example, the model index controls
shape, in the second it controls tail behavior. The other parameter, which we do estimate,
has a common interpretation across models.
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1 Introduction

It is not clear how robust inferences should be to the information that was used to form
them. Too much robustness reflects a failure to model key features of a phenomenon
and too little robustness means that inferences will not generalize adequately. As a
consequence, there is a substantial body of work examining diverse aspects of robustness

in various contexts.

Robustness of inferences has been examined in both the Bayesian and frequentist con-
texts. Sensitivity of inferences to the choice of prior has been extensively investigated; for
a review see Berger (1994). Also, Lavine (1991) considers sensitivity of the posterior to
the prior and model jointly. Much recent work has focussed on local sensitivity, where in-

finitesimal changes in the prior are studied. McCulloch (1989), Dey and Birmiwal (1993),

the many references. Sensitivity of inferences to the choice of model has been examined by
White (1982), Gould and Lawless (1987), Neuhaus, Kalbfleisch, and Hauck (1992), Basu
(1994), Tsou and Royall (1995), and others, from a variety of viewpoints. Sensitivity to
the data, in terms of the problem of outliers or unreliable measurements in a data set
has also been examined in terms of local influence, see Cook (1986). Diverse methods for
reducing influence appropriately have been proposed. For reviews, see Huber (1981) and
Hampel et. al (1986) amongst others. From a Bayesian point of view, many authors have
investigated the effect of outliers, including Kass, Tierney and Kadane (1989), Weiss and
Cook (1992), and Peng and Dey (1995).

Restricting to the Bayesian context, a posterior distribution is determined by a prior
distribution for unknown parameters, a model for the conditional distribution of data
given these parameters, and the observed data themselves. The novelty in our approach
is that we examine the robustness of the posterior distribution to all of these inputs
simultaneously. We call this cumulative robustness. That is, we permit the prior, model,

and data to vary so as to obtain a perturbation of the baseline posterior. The relative



entropy between the baseline posterior and its perturbation is compared to a measure of
distance between the baseline inputs and the perturbed inputs. The distance used on
the input triples is a sum of three distances for the three inputs: prior, model, and data.
Our interest lies in the maximal rate of change in the posterior relative to change in the
inputs. Further, we can examine how much of this maximal change is due to change in
the prior, how much is due to change in the model, and how much is due to change in the

data.

For computational and interpretational simplicity, we work locally. That is, we ex-
amine the effects of small changes in the inputs by examining second—order Taylor series
approximations to both the relative entropy between posteriors and the input distance.
Our method is an extension of McCulloch’s (1989) method for examining prior robustness.
Specifically, we examine the cumulative robustness in two examples. Both are exponen-
tial families with a scale parameter admitting sufficient statistics and conjugate classes of
priors. However, these are not restrictions necessitated by the method we propose; rather,
they are motivated by the desire to provide examples involving quantities that are easily

computed when they cannot be obtained in closed form.

There are several aspects of this formulation that require comment. First, we must
choose a measure of distance between the baseline posterior and a perturbation of it.
Here we choose the relative entropy and note that its asymmetry is appropriate: In effect
we are assuming the baseline posterior is ‘true’ and assessing divergence from it. This is
consistent with the use of the relative entropy in seeking codes with minimal redundancy.
Also, we choose a measure of distance for prior, model, data triples. We use the sum of the
relative entropy on the priors (baseline and deviated), the relative entropy on the models
and a third measure of distance on data sets. We specify the latter in the forthcoming
example and note that it may be the most important for detecting incompatibility of the
data with a given prior and model.

***Second, we have perturbed the data, and done so in a Bayesian context. ***



Third, in an effort to use robustness to detect insufficient goodness of fit, we recognize
two sources of conflict, either of which may be present in a particular application. These
are data-prior conflict and data-model conflict. Prior-model conflict does not occur be-
cause the prior and model represent disjoint sources of information which are chosen by
the experimenter. The idea of data-model conflict is essentially goodness of fit. Either
the data are representative of some member of the class of conditional densities defined
by the model or they are not. The idea of data-prior conflict is that the prior represents
information about where the parameter lies. The data might not give a estimate of the

parameter which is within the region where the prior density is highest.

We propose that examination of the cumulative robustness can, in some cases, be used
to detect the presence of data-model and data-prior conflict. Specifically, our examples
below suggest that in a good data analysis, one finds maximal sensitivity to the data
and comparatively little sensitivity to the prior and model. Consequently, an elevated
sensitivity to either the prior or model may indicate the presence of one of the types of
conflict identified. There is a caveat in this: If the directions of the deviation from the
data to the prior and from the data to the model are opposite, the sensitivities may cancel
giving the illusion of high sensitivity to the data when in fact the sensitivity to the prior

and/or model is higher.

The setting in which we demonstrate our proposed technique is that of scale parameters
in exponential families with conjugate priors. It will be seen that this is the easiest setting
for the practical implementation of our technique. In a scale family, the relative entropy
between models depends only on the model parameter, and not on the estimand. This
leads to an interpretable term for the model in the input distance. Using conjugate families
of priors makes it easier to find the direction of maximal rate of change of the relative
entropy between the baseline posterior and its perturbation. In addition, when estimating
the same parameter using different models, it is important to ensure that the parameter
has the same interpretation in all of the models. In our examples we parametrize so that

the parameter of interest is the mean, for all models.



To fix ideas, consider the following example. Let X = (Xy,...,X,) be independent
and identically distributed observations from a gamma distribution. Suppose that the
mean of this distribution is to be estimated from the observed data X = z, while the
shape parameter is a model index determined from physical modeling, or other external
considerations. In particular, let G(a,b) denote the gamma distribution with density
proportional to 2*~'e~*/*. Then the data are modeled as arising from the G(\,6/)\)
distribution, where 6 is the unknown mean parameter and A is the known shape parameter.
Inverse gamma distributions are conjugate priors for . Let IG(a,b) denote the inverse
gamma distribution with density proportional to z~(@tDe~%2 A prior distribution 6 ~
IG(aq,ay) leads to a posterior distribution of the form #|X = x ~ IG(af, «}), where

o} = a; +n) and of = ay + nAz, with £ = n~' 3 | x; being the sample mean.

Now, for sample size n, the posterior distribution is determined by the prior indexed
by «, the model index A, and the data x. To study the effect on the posterior distribution
of simultaneous small changes to the three inputs we compare the baseline posterior given
by w = (a, A\, x) to the posterior based on a nearby set of inputs @ = (&, A, T) and measure

the discrepancy between these two posteriors by the relative entropy. We denote this by
dPS(wan) = D(IG(O‘T,O‘;)HIG(&T?d;))? (1)

where D(pl|lq) = [ p(x)log(p(z)/q(x))dx for arbitrary densities p and ¢ with respect to

Lebesgue measure.

Analogously, we take the discrepancy between the two prior distributions to be
dpr(a, &) = D(IG(ar, )|[IG (G, dn)), (2)
and the discrepancy between two models to be
dy(N ) = D(GN0/N||G(N,6/N)). (3)

Since relative entropy is invariant under transformation of the sample space, the value of

dyr does not depend on the scale parameter 6, only on the model indices A and .



Finally, we must specify a measure of discrepancy on data sets. We choose

dp(z,7) = ((__)) , (4)

chiefly for convenience but also because it is compatible with our choice of the relative
entropy in several senses. First, (4) is invariant under a common affine transformation
of x and z, which mimics the invariance of relative entropy under transformation of the
sample space. Second, to first order dp(x,Z) does not depend on n, like dpgr(c, @) and
dM()\,S\) which do not depend on n at all. Thus it is possible to isolate the effect of
sample size on the posterior from the effects of changes in the prior, model, and data.
Note that (4) is based on changes in the individual data points, and so is sensible when
the differences of the form |Z; — z;| are small compared to the spacings between the order

statistics of & or x, as is the case when 7 is a local perturbation of .

For a given inputs w, we maximize dpg subject to a constraint on the difference between

w and w. Formally, let
dI(w,cD) = dpR(CY,ONZ) +dM(>\,5\) —f—dD(ZE,ZZ’) (5)

be the input distance. Then the maximum of (1) as a function of &, subject to an upper

bound on (5), would be a basic measure of posterior sensitivity to all inputs jointly.

A useful simplification results from approximating the solution to the constrained
maximization problem is approximated. Expand expressions (4) and (5) about w to get

di(w,®) = dj(w,®) and dps(w,®) = dpg(w, @), where

dj(w,@) = $(@—w) Arw)(@—w), (6)

Do =

and

dps(w,@) = 5(@—w) Aps(w)(® —w). (7)

DN =

In each case, A(w) is the second derivative of d*(w,®) with respect to @, evaluated at

w=w.



The additive form of (5) yields

APR(CY) 0 0
Aflw) = 0 Aw() 0 (8)

where Apg, Ay, and Ap are second derivatives arising from (2), (3), and (4) respectively.

One can verify that Apg(«) is the Fisher information matrix for the IG(a, as) i.e.,

arnte) = (V) Tl ).

—1/ay /a3
where ¢’ is the trigamma function. Expression (2) gives that Ay/(A) is the Fisher infor-
mation matrix for the parametric family of model densities indexed by A, under a fixed
value of the 0. In the present case, A, is the Fisher information for the G(A, 8/)) family,
when 6 is known and it does not depend on 0, i.e., Ay(\) = ¥U'(A\) — A~L. Finally, we
have that Ap(z) = 2(3,_, n(z; — 7)?)~'I,,, where I,, is the n X n identity matrix.

Analogously, Apg(w) is the Fisher information matrix for the family of posterior distri-
butions indexed by the input vector w. This can be determined directly from the form of
the posterior distribution but it is simpler to use conjugacy. The hyperparameter vector
« is updated to o, which map from the input vector w to the updated hyperparameter

XXk,

vector a*. ( not w 7) Letting B denote this mapping, the Fisher information for the

posterior distribution is
Aps(w) = {B'(w)} Apr(B(w)){B'(w)}, (9)

where B’ is the derivative of B. In the present case,

aq

B 0 _ oy +nA
A N s +nA\T )’
T

with derivative

aq

A 01 nz A A

T



Now we seek the maximum value of (7) as a function of @, subject to the constraint
that (6) does not exceed some fixed value €. A standard linear algebra result (see, for
instance, Srivastava and Carter, 1983, Corollary 1.10.1) gives the maximum as ke?, where
k is the largest eigenvalue of [A;(w)] ' Apg(w). This maximum is attained by taking
W = w + cv, where v is the eigenvector corresponding to eigenvalue k, and c is a constant
chosen so that (6) is equal to €. This approach was first used by McCulloch (1989). to
investigate sensitivity to the prior in which case only the first term in the right-hand side

of (5) is present.

Here, the approximations d; and dpp to dr and dpg are better when @ — w is smaller.
Consequently, £ can be regarded as the locally maximal rate at which dpg changes relative
to d;. We therefore define k£ to be the cumulative robustness. Note that this definition
of cumulative robustness permits attribution of sensitivity to the model, data, and prior.
Specifically, the discrepancy in inputs along the direction of maximal change can be

partitioned as
VTA](CU)V = Z/,II::RAPR(O()VPR + V]:\ZAM()\)Z/M + V%AD(:L’)VD, (10)

where v = (vpg, Vi, vp) is the partition of the maximal eigenvector into components
corresponding to the prior, model, and data respectively. So, the ratio of vhr Apr(a)vpg
to vT Aj(w)v is the relative contribution of prior uncertainty to the cumulative robustness.

The relative contributions of the model and data can be reported similarly.

As a numerical illustration let the baseline model specification be A = 2 and let
« = (3,2). This makes both the prior mean and prior variance for § equal to one. A data
set of size 20 is simulated from the Gamma(2,1/2) distribution. Such a data set arises
when the baseline model specification is correct and the true value of 8 is equal to the
prior mean for #. The cumulative robustness of the posterior based on only the first five
observations is k = 1.80, with relative contributions of (.13, .15,.73) from the prior, model,
and data respectively. If the first ten observations are used, the cumulative robustness is

4.92, with relative contributions of (.02,.01,.96). If all twenty observations are considered,



the cumulative robustness is 12.42, with relative contributions (.01, .00, .99). (The relative
contributions do not necessarily sum to exactly to one because of rounding.) These

numerical results are consistent with the discussion in the following sections.

In Section 2, after formulating another example, we provide further numerical results
to show how the cumulative robustness and its partition may be used to detect lack of
agreement between the prior and the data or between the model and the data. In the

discussion of Section 3 we give some methodological implications.

2 A Power Family of Gamma
2.1 A Parameter for Tail behavior

Again, consider estimating the mean 6 of a distribution on (0,00) which gives rise to
independent and identically distributed observations X7, ..., X,,. In this example, suppose
the model index A governs the right tail behavior of the distribution, and that the data are
modeled by a density proportional to exp(—(z/0)"), where ) is known and ¢ is unknown.
That is, A is presumed determined by a physical model. Note that A = 1 yields an

exponential model, and A = 2 corresponds to a truncated-normal model.

Since the mean 6 is the quantity of interest, we switch from the (), o) parameterization
to the (A, 6) parameterization. This is accomplished by setting o = 0/c,, where ¢, =

['(2/A)/T(1/A). Under the desired parameterization, the density of a single observation

el = (5) rr o (—[(%)/). (1)

Alternatively, this distribution corresponds to the power of a gamma random variable. In

is

particular, the parametric family can be represented as

7 = <ﬁ> S (12)

Cx
where Zy ~ G(1/)\,1). We denote the parametric family (11) as PG(A,0) (the P stands

for power).



This example differs from that of the previous section in that the family of conjugate
priors for § depends on the model index \. Parametrizing by o = (a1, o), the conjugate

prior density has the form

0) = a_gl 1 o 02/0 (13)
Pra ~ T(ay) ot
In parallel with (12), (13) can be expressed as a power of an inverse gamma variate,

0 = o (14

where 0y ~ IG(aq,az). It is straightforward to verify that for each A and «, (13) is a
unimodal density. Let PIG(ay, sz, A) denote the parametric family (13). Then Bayesian
updating proceeds as follows. If X,..., X, are independent and identically distributed as
PG()\, 0), and 0 ~ PIG(y, g, A), then 0| X = x ~ PIG(aj, a5, A), where of = oy +n/A

and b = ag + A X0, 2.

Following the method outlined in Section 1, we need the Fisher information matrix for
the PIG (a1, ag, A) and the Fisherr information for the PG(\, #) family when 6 is known.
These quantities are derived in the Appendix. Discrepancy between data sets is again

measured using (4).

The fact that the class of conjugate priors depends on the model index A necessitates
slight changes in the methodology of Section 1. In particular, the discrepancy between
priors depends not just on a and @, but also on A and X\. Let v = (a, \) and replace
dpr(a, &) by dpr(7,7). This in turn causes a modification to (8), in that Apg(y) and
Ap(A) will overlap. That is, both the prior discrepancy and the model discrepancy
contribute additively to the A block of A;. The relationship (9) is still valid, provided
that B is considered to map (o, A, x) to (a*, A).

2.2 Computational Results

Provided one has reliable data, there are two sorts of modeling errors a Bayesian can

make. The prior beliefs may be wildly wrong in the sense that the sample mean is far

10



from the prior mean. Or, the data may conflict with the model in the sense that the
model fails a goodness of fit test. Consequently it is desirable to characterize four cases.
The first is the ideal case of no conflict. That is, the data reinforce the prior beliefs and
the model fits the data. The second case is that of data—model conflict but no data—prior
conflict. That is, the data reinforce the prior beliefs but the model fit is poor. The third
case is the reverse of this: there is no data model conflict but the data contradict the
prior beliefs. In the fourth case the model fit is poor (data-model conflict) and the prior

beliefs are wrong (data—prior conflict).

To investigate these cases we compute the cumulative robustness and the relative
contributions of the prior, model, and data to it. Given the sample size n, the “true” model
index \*, and the true parameter value 6*, we take the data vector z to be the (1/(n +
1),...,n/(n+ 1)) quantiles of Py-(:|#*). This ensures that the data set is representative
of the true model and parameter values. Here, in fact, we set 0 = 1. This is without loss

of generality, because  is a scale parameter.

For interpretability, priors are specified by their moments. For a given A, let v; and
Vo be the prior mean and standard deviation. Thus v is a reparameterization of «;
mathematical details are given in the Appendix. To compare relatively informative and
noninformative priors, we take the prior standard deviation to be v, = 0.2 and vy, =
0.9 respectively. Now the degree of prior-data conflict can be summarized in the other
hyperparameter v;. We choose v, = #* for prior—data agreement, since x is a vector of
quantiles under 6*. For prior—data conflict we set v; = 8* 4+ 215 so that the true parameter

lies two prior standard deviations away from the prior mean.

We take the true and assumed model indices, A* and A, to be elements of the set
{1,2}. The presence or absence of data—model conflict is represented by taking A\* = A or
A* # X respectively. Thus two representations of conflict are possible: (A*; A\) = (1,2) and
(A*;A) = (2,1). These two possibilities correspond to using a model with a lighter tail

when a heavier tail is appropriate, and using a model with a heavier tail when a lighter

11



tail is appropriate. Thus the two conflicts are in opposite directions. We return to this

point presently.

The results of our computations have been organized into four tables. Each table has
three rows for sample sizes n = 5, 10, and 20, and four columns corresponding to the
four cases described at the beginning of this subsection. For Tables 1 and 2, A\* = 1; for
Tables 3 and 4, \* = 2. Tables 1 and 2 differ in the informativity of the prior; Tables 3
and 4 differ in the same way. Each table entry consists of one number representing the
cumulative robustness under the given conditions, and one triple representing the relative

contributions of the prior, model, and data to that cumulative robustness.

When examining Tables 1 through 4, it is meaningful to compare the cumulative
robustness values to each other, and to compare the values within one triple to the corre-
sponding values in another triple. However, it may be less meaningful to compare values
within a triple to each other. This is so because within a triple the divergence measure for
the prior and model is a relative entropy between one dimensional distributions compara-
ble to each other and to the divergence between posteriors. By contrast, the divergence

measure on the data is somewhat ad hoc.

Tables 1 through 4 have several anticipated properties. First, in each column of each
table the cumulative robustness increases with sample size. This is consistent with work
of Gustafson and Wasserman (?777) showing that for fixed data and model, the norm of
the mapping from prior to posterior increases with sample size. Indeed, regardless of the
actual value of x, the posterior concentrates as the sample size increases. Consequently,
as the sample size increases, slight shifts in the data are magnified by the concentration.
Second, the relative contribution of the prior to the cumulative robustness, as given by
the first entry in each triple, always decreases with sample size. Third, the highest relative
contributions of the data to the cumulative robustness occurs when the prior and model
agree with the data. This is true in every case when n = 20, and in most cases for

smaller sample sizes. This suggests that one wants a posterior which is relatively robust
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to deviations in the prior and model so that most of the sensitivity is to the data. Finally,
the relative contribution of the prior to the cumulative robustness tends to be larger in
the presence of data—prior conflict and the relative contribution of the model tends to be

larger in the presence of data—model conflict.

The tables exhibit some unexpected properties as well. First note that in Tables 1
and 2 the sensitivity tends to be larger in the second and third columns than in the first
and fourth columns. Heuristically, it is tempting to expect that the sensitivity should be
greater in the presence of both conflicts than in the presence of either conflict alone. In
fact, while this is plausible it is masked here because the directions of the two conflicts
cancel each other. In the first two tables the data represent a thicker—tailed distribution
(A\* = 1). Adding data—model conflict by modeling with a thinner—tailed distribution
(A = 2) tends to bias estimates downward since the data are positive. However, the data—
prior conflict we have used—centering the prior two standard deviations higher than
0*—biases estimates upward. Thus these two sources of conflict tend to cancel leading to
a cumulative robustness smaller than under either conflict alone, at least for the larger of

the sample sizes we have used.

The reverse is seen in Tables 3 and 4. In these cases the data come from the thinner—
tailed distribution, but under data—model conflict they are modeled with the thicker—
tailed distribution. The wrong model tends to bias estimates to the right, as does the
prior when data—prior conflict is present. TogetherIn tandem the two conflicts reinforce
and give a larger cumulative robustness. The frequentist robustness literature suggests
it is less damaging to use a thick—tailed distribution with thin—tailed data than to use a
thin—tailed distribution with thick—tailed data. This is supported in the present context
because the cumulative robustness values in column 2 of Tables 1 and 2 are larger than

their counterparts in Tables 3 and 4 respectively.

Finally, we note that our results here are for a very special case: the data are univariate

and positive, the parameter is a positive scalar, and the classes of priors are conjugate,

13



indexed by a two—dimensional hyperparameter. Because of these simplifying features, it
is possible to determine when data—prior and data—model conflicts cancel or reinforced

each other.

3 Discussion

The main methodological novelty of the present work is twofold. First, we have proposed
a comprehensive measure of a posterior’s sensitivity to its three inputs: the prior, the
model, and the data. Second, we have partitioned this cumulative robustness so that
the relative contributions of these inputs can be identified. We suggest these relative
contributions can be used to detect inappropriate prior densities (data—prior conflict) or

ill-fitting models (data—model conflict).

Both of the examples here suggest that for valid inferences the relative contribution of
the data to the cumulative robustness should be as high as possible, and that high contri-
butions from the prior or model are associated with data—prior and data—model conflict
respectively. When both sources of conflict are present the cumulative robustness may not
be high due to a cancellation effect. So, as yet, we cannot make a non-trivial statement
about detecting this case by looking only at the relative contributions of the prior and
model to the cumulative robustness. Nevertheless, the partitioning of cumulative robust-
ness as we have defined it here is a partial check for model fit and good prior information

because high sensitivity to the prior or model may indicate a modeling problem.

Settings with data-model conflict constitute a general limitation on robustness meth-
ods. This is so because lack of fit is not always detectable through criteria reflecting
robustness exclusively. In particular, an ill-fitting model may be highly robust. However,
as in the examples here, it is often the case that lack of fit is associated with lack of
robustness, because a slight change to an ill fitting model may yield substantially better
inferences. Thus our use of robustness when the only source of conflict is between the data

and the model gives results consistent with intuition. When there are two sources of con-
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flict, the discrepancy between robustness and goodness—of-fit can be more pronounced,
as is seen in our results. This is simply due to the fact that variations in the prior and

model can either cancel or reinforce one another.

Appendix

Details for the example of Section 3 are given here. Some of the expressions were deter-
mined or verified using the MAPLE software package. Several facts are used repeatedly in
what follows. First, note that if G is a standard gamma random variable with shape pa-
rameter s, then F(G?®) = I'(a+5)/T'(s), provided @ > —s. Furthermore, E(log G) = ¥(s),
where ¥(s) = 21log['(s) is the digamma function. The trigamma function is denoted

U'(s) = 20(s).

From (13), the relative entropy between two conjugate priors under different models

is seen to be

B oS T (& -
den(v,7) = log (leirgcji)+<w—am>Ea,A(loge>+
2 1

ONégEa’)\(ei)\) — OégEa’)\(ei)\). (15)

The expectations are easily evaluated by substituting the right-hand side of (14) into

(15), and then applying the above—mentioned facts. The resulting expression is
~ )\ag‘lf‘(dl)> ~ 3 <10g042 - w(a1)>
d y = 10 — | + (& )\ — )\ —+
r(7) = tog (O ¢ (005 -y (2525
ay T(ay +A/\)
Oé;\/)\ F(Ozl)

— Q.

Differentiating twice and setting 4 =+ gives the (symmetric) second derivative matrix:

@/)I(Oél) ;_21 _loga2;1/1(o¢1)
oy a1 (¢P(a1)—logas)+1
Apr(y) = ol )
a1 [(¥(a1)—log as+(1/a1))?+¢' (a1)]|—(1/a1) +1
/\2

A very similar argument leads to an expression for the relative entropy between two

sampling densities for a single observation X, under a common mean 6 but different
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models X and \. By the invariance of relative entropy, we take §# = 1 without loss of

generality. From (11) and (12) we see that

du(M ) = Ey {log (%) + (Z—iyl/*)x _ Y},

where Y = (¢, X)*. From (12) it is seen that ¥ ~ Gamma(1/\) under model A\. Thus

the expectations can be calculated, leading to

N = o (GO eV IOED) 1
(XA = lOg(C;\S\F(l/)\)>+<C>\) L(1/A) A

Differentiating twice with respect to X yields:
A = (1) wamy+
() {7/ + 41(1/3) — v/ + 41(1/%) ~ /AT +
(1) 1 awa/ - e/

The Bayesian updating takes the form

o o1 + (n/A)
Bl V| = | em+aria |.
A
T
This leads to a derivative
1 0 = 0 0
Bw) = |0 1 &YXz Qi AT ,
0 0 1 0 0

where
%&Zx? = {[Zx logle [log ey + (1/ M) (1/X) — (2/N)(2/N)] [Zf’?”

To determine hyperparameters (aq, ay) in terms of the prior mean and standard de-

viation (v, 1»), note that under (13), E, »(0) is given by

I/AF(al — 1/)\)

hT I'(a1)
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(provided a; > 1/X), and E, ,(0?) is

anL(ar —2/X)

1/224—1/% = T(n)

(provided a; > 2/)). Both these calculations are expectations of (negative) powers of

gamma random variables. We can numerically solve

Mlaa—2/ND(e) 12
T -1/~ o

for ay. A solution exists for a; € (2/),00), since the left-hand side decreases from oo
down to 1 over this range. This fact follows from the concavity of the digamma function.

Subsequently, «y is determined as
gy = —F(al) v '
? T —1/0) ") -
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no data-model data-prior both

n conflicts conflict conflict conflicts
5 1.47 2.01 2.91 2.99
(0.28, 0.28, 0.44) (0.20, 0.27, 0.53) (0.80, 0.18, 0.02) (0.99, 0.00, 0.01)
10 2.96 6.22 5.16 4.93
(0.09, 0.07, 0.85) (0.14, 0.33, 0.53) (0.67, 0.26, 0.07) (0.96, 0.01, 0.03)
20 6.97 15.39 8.87 8.44

(0.02, 0.01, 0.96) (0.13, 0.35, 0.52) (0.54, 0.27, 0.19) (0.79, 0.09, 0.12)

Table 1: Cumulative robustness and relative contributions of inputs. The data are rep-
resentative of A* = 1 and 6* = 1. The prior standard deviation is 0.9 throughout. The
model index A is 1 (2) under absence (presence) of data-likelihood conflict. The prior
mean v is 1.0 (2.8) under absence (presence) of data—prior conflict.

no data-model data-prior both
n conflicts conflict conflict conflicts
5 1.24 1.22 1.49 1.65
(0.74, 0.15, 0.11)  (0.81, 0.00, 0.19) (0.86, 0.12, 0.02) (0.94, 0.04, 0.02)
10 1.79 2.38 2.18 2.18
(0.43, 0.16, 0.41) (0.30, 0.16, 0.54) (0.66, 0.24, 0.10) (0.85, 0.03, 0.12)
20 3.86 9.39 4.10 3.58

(0.15, 0.08, 0.76)  (0.08, 0.40, 0.52) (0.41, 0.31, 0.28) (0.59, 0.00, 0.40)

Table 2: Cumulative robustness and relative contributions of inputs. The data are rep-
resentative of A* = 1 and 6* = 1. The prior standard deviation is 0.2 throughout. The
model index A is 1 (2) under absence (presence) of data-likelihood conflict. The prior
mean v is 1.0 (1.4) under absence (presence) of data—prior conflict.

no data-model data-prior both
n conflicts conflict conflict conflicts
5 1.34 1.49 2.92 2.89
(0.20, 0.14, 0.66) (0.31, 0.42, 0.27) (0.99, 0.00, 0.01) (0.74, 0.24, 0.02)
10 3.38 2.76 4.86 5.33
(0.09, 0.16, 0.75) (0.14, 0.32, 0.55) (0.98, 0.00, 0.02) (0.60, 0.35, 0.05)
20 7.58 5.81 7.98 9.54

(0.06, 0.14, 0.80)  (0.06, 0.23, 0.71)  (0.89, 0.02, 0.09) (0.47, 0.41, 0.12)

Table 3: Cumulative robustness and relative contributions of inputs. The data are rep-
resentative of \* = 2 and #* = 1. The prior standard deviation is 0.9 throughout. The
model index A is 2 (1) under absence (presence) of data-likelihood conflict. The prior
mean v is 1.0 (2.8) under absence (presence) of data—prior conflict.
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no data-model data-prior both

n conflicts conflict conflict conflicts
5 1.17 1.20 1.64 1.44
(0.75, 0.07, 0.18) (0.71, 0.20, 0.09) (0.91, 0.07, 0.02) (0.83, 0.15, 0.02)
10 1.69 1.77 2.34 2.19
(0.40, 0.00, 0.60) (0.41, 0.30, 0.29) (0.78, 0.13, 0.08) (0.59, 0.33, 0.08)
20 4.27 3.61 3.83 4.36

(0.11, 0.07, 0.82) (0.16, 0.30, 0.53) (0.61, 0.13, 0.26) (0.34, 0.48, 0.18)

Table 4: Cumulative robustness and relative contributions of inputs. The data are rep-
resentative of \* = 2 and 6* = 1. The prior standard deviation is 0.2 throughout. The
model index A is 2 (1) under absence (presence) of data-likelihood conflict. The prior
mean v is 1.0 (1.4) under absence (presence) of data—prior conflict.

21



