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Abstract

We present a general procedure for joint modelling of the mean structure and
the stochastic dependence for longitudinal data. To reveal the underlying de-
pendence mechanism, we proceed in three steps. First, we use cross-sectional
regression to relocate the data to achieve marginal stationarity. Second, we
discretize the relocated data. Third, we model the dependence structure
of the discretized data as a stationary Markov chain with sufficiently high
order. The procedure is primarily developed for continuous responses, but
it is applicable for discrete responses that emerge from an underlying con-
tinuous process. Two data analysis examples are presented to illustrate our
procedure.
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1 Introduction

Dependence and nonstationarity are, essentially, always present in data
observed sequentially over time. It seems there has been little study of
statistical models that jointly address mean and dependence structures, see
Diggle et al. (1994, Chap. 10, p.207). Statistical inference can become
very challenging when modelling repeated stochastic processes is of primary
interest. Rather than treating the dependence structure as nuisance as most
of current methods do in the analysis of longitudinal data, here we focus
on the development of statistical procedure to explore the mechanism of
stochastic dependence.

We present a general approach to a large class of repeated stochastic
processes. It is based on treating dependence and nonstationarity disjointly.
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We do not deal with the dependence structure nonstationarity except to re-
main aware we are using stationary approximations. To deal with marginal
nonstationarity, we assume a location model in which it is enough to model
the mean of each random variable in the sequence as a function of the covari-
ates of interest. To tackle possible dependence structures in the relocated
sequence, we discretize and then “Markovize” by approximating it with a
stationary Markov process of a sufficiently high order.

A key assumption is that the relocation by a regression function results
in a stationary residual process. Thus, we imagine that the mean of the
response Y; drifts over time according to a deterministic function of the
covariates. For each subjecti,7 =1,..., K werelocate Y;; to Z; ; = Y; ;— i
where the mean for subject ¢ has a linear model

p
Bit =Y i Xit (1.1)
j=1

in which the 7; ;’s are regression coefficients for the p covariates X;; j, with
j=1,...,p at time ¢t (p < K). In some practical settings, the variance
of responses is time-varying, such as volatility in financial time series, one
then has to rescale the response by replacing Y; ; with Z; ; = (Y; ¢ — i) /0it
for each subject, where 3;; is modelled by (1.1) and o;; is modelled analo-
gously by

P
IOg UiQ,t = Z’%’in’t’j' (12)

j=1
For ease of exposition we ignore this added complexity by assuming that
the marginals have the same shape after relocating and that the linear re-
gression is sufficient to remove time-varying marginal patterns. Moreover,
either the mean model (1.1) or variance model (1.2) may be specified as a
nonparametric regression fashion, such as the generalized additive models

(Hastie and Tibshirani, 1990), if the data suggest so.

In Section 2, we briefly outline the key steps in our approximation. Sec-
tion 3 examines the key choices in detail. Section 4 situates our methods in a
general stochastic process context to indicate the role of our approximation.
In Section 5, we demonstrate our approach in two applications.

2 General Approach

For convenience, we suppress the subject index ¢ in this section. Let
{Y;,t = 1,2,...,} be a stochastic process taking quantitative values in an
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ordered set. Assume that for a given integer n, the joint density of Y7,...,Y},
is a member of a parametric family, defined by

pﬁ,a(ylv"' ;yn) :pa(yl =B, s Yn _BTL) :pa(zla"' 7zn)7 (21)

where 8 = (f1,. .., ) represents the location of each response variable and
Zy =Yy — B¢ are relocated random variables having the same sample space
X and mean 0. The densities Pa,S and po in (2.1) are taken with respect
to a common dominating measure .

Suppose we have a finite partition P = (Sy,...,Sp) of the sample space
X. Then for fixed a and n, the joint distribution of Zq,...,Z, can be
approximated by

po(z1y -y 2n)p(Siy) X -+ x u(S;,)) =~ Pa(Z1 € Siys---3Zn €5i,), (2.2)

for z1 € S4,,...,2, € S;,. Writing ygﬂ = (Y, Yit1s---»Yitj), we can factor
the probability on the right-hand side of equation (2.2) as

Pa(Zl € Si1)Pa (ZQ € Si2|Zl € SZ1) s Pa(Zn € S; Z?_l € SZL_I) (2.3)

ol

which can be further approximated by

n
[[ Pa(z; € 8,122 €527} (2.4)
j=1
where 7 is the order of the approximating Markov chain.
For the special case that r = 1, we get the transition equation
P(Zt € Sl) P(thl € Sl)
: = [Pa(Zt S Si|Zt_1 S Sj)]i,jzl,...,l
P(Z; € Sy) P(Z;—1 € Sy)
(2.5)
Denote the transition matrix in (2.5) by T'(a,t) with entries Tj;(cx,t) that
only depend on the parameter a. The transition matrix T'(e,t) is the ul-
timate object that we aim to obtain through our procedure to examine the
stochastic dependence structure of the data. Note that parameter o does
not appear in the marginal probability vectors due to the marginal station-
arity of the relocated process Z;, which is crucial to proceed approximation
by a stationary Markov chain.

The above procedure rests on the fact that Markovity is a property of
probabilities, rather than expectations, and so is compatible with many mean
structures. This generality allows us to cover both continuous and discrete
responses. Moreover, the discretization is helpful to overcome the difficulty
of estimating transition intensities under a continuous sample space.
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3 Choice of Approximations

The relocation task is easy to accomplish by running the cross-sectional
linear least squares regression with model (1.1) at each time, t = 1,...,n.
The resulting vectors of residuals are then (Z 4,..., Zk ;) at timet = 1,...,n.
These vectors are then further standardized by division by /1 — hy; where
hi i is the i-th diagonal element of the hat matrix in the ¢-th regression.

For each of the n standardized vectors, (Z14,...,Zky),t =1,...,n, we
discretize and approximate by a Markov chain so as to fit a model of the form
(2.5). This gives a transition matrix T'(a) = T(ex,t) which is independent
of time, but is a function of a which we must estimate.

3.1 Choosing the order of the Markov chain. The relocated processes
are marginally stationary and can be approximated by a stochastic process
whose autocorrelation depends only on time lags. The autocorrelation func-
tion (ACF) is p(h) = v(h)/v(0),h > 1, where y(h) = cov(Z;, Zy1h),h > 1 is
the autocovariance function (ACVF) and v(0) is the variance. The sample
ACF for the sequence of standardized residuals leads to K estimated Markov
orders, each for one subject. If all of these empirical orders are the same
there is no problem. Otherwise, we form a histogram from these estimated
orders and use its mode. As usual, we estimate the order of the process by
the maximum lag for which the sample ACF exceeds the approximate 95%
confidence limits +2/4/n, see Brockwell and Davis (1996, Chap. 6).

3.2 Choosing a partition. Next, choose the partition P for given £ =
card(P). Consider any univariate random variable Z : @ — & and the case
¢ = 2. Approximating Z by a step function in L, we want to find a; and
ay as well as disjoint sets A; and As (with A; U Ay = Q) to achieve

min  E|Z —ai1xa, — a2XxA,|- (3.1)

a1,a2,A1,A2

The argument of the minimum in (3.1) equals E|(Z — a1)xa,| + E|(Z —
a2)X A,|, and these two terms can be separately minimized to see that ay
must be the median of Zx 4, and a2 must be the median of Zx4,. When Z
is symmetric about 7, the natural choices for A; and Ay are A} = Z71(S;) =
{weQ: Z(w) € 81} and Ay = Z 1(S3), where §; = (—o00,7] and Sy =
(1,00). Then one would choose the sample median as an estimator of 7.
This argument generalizes to the case £ > 3, leading to the following.

PROPOSITION 3.1 : Suppose the support of the density of Z is a connected
set and let the integer £ > 2. An optimal choice for P under Ly distance is
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the collection of sets defined by the j /¢ percentiles, where j = 1,....4—1. That
is, the partition can be optimally defined by the collection of £ — 1 boundary
points dividing the distribution into £ equally probable connected regions.

The proof of this result is as follows. First, the argument is analogous
to the case £ = 2 when / is even. When / is odd, there will be a middle bin
on which one takes the median in addition to the even number of bins on
either side of the point of symmetry.

It remains to choose ¢. Let m(z) be the (marginal) density for Z. For
each £, we can approximate m(z) by

l
me(z) =Y m(med;) xs,(2)
i=1
where med; = median(Zx4,) and the S;’s are the sets in P for the given £.
It is seen that my(z) is a step function motivated by Proposition 1, and as
¢ — oo, Elm(z) —my(z)| — 0. Thus, we can choose the smallest ¢ for which
E|m(z) — my(z)| < ¢, with a pre-specified precision e.

3.3 The categorical response case.  Following McCullagh (1980), our
procedure first represents c-level categorical responses, {Y;; € {1,...,c},t =
1,...,n}, in terms of underlying continuous stochastic processes {U;;,t =
1,...,n}, each for one subject i = 1,..., K. Thus, the defining relation
between Y;; and the latent process U;; is given by

Y;,t:h < Gt h—1 <Ui,t§a’t,ha h = 13"'aca

where —oco0 = a9 < a4 < -+ < age—1 < ay = 00 are time-dependent,
but subject-independent, threshold points, which can be estimated cross-
sectionally. Naturally, we apply a variant of our procedure from Section 3.2
to the underlying continuous U;;. We use the cumulative probit regression
model to get marginal stationarity. To proceed, we assume U,y ~ N (B, 1)
with mean ;; being defined in (1.1). The resulting model takes the from

Nigh =@ H{P iy <h)} = app — Bis, (3.2)
and the cumulative probability is
P(Yis < h)=P(U;s<aypn)=P(&<ayn—PBi)=P(arn—PBiy), h=1,...,¢c, (3.3)

where (§—=1,...,&=y)" is an independent copy of the relocated (U;=1,...,
Uit=n)', for any i, and so has & ~ N(0,1) marginally. The regression co-
efficients and the threshold points in (3.2) can be obtained by maximum
likelihood estimation (McCullagh and Nelder, 1989).
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A first-order Markov model requires that the conditional probabilities
P(Yi111=h|Y; =" ) =P(a41,h—1<Uipr1<arp1p | a1 <Uip<app). (3.4)
Using the MLE’s @), and Bz‘,t to get 7;4,n, we approximate in (3.4) by

P@itr1,n1 < &1 < Migrrn|Mign -1 < & < Mipnr)- (3.5)

(Subtract g;; from U;; in (3.4), and use MLE’s to get the fitted values
fitn’s.) In order to pool the cross-sectional data to estimate transition
probabilities, we must remove the dependence on i in 7;;5’s. Also we must
remove the dependence on ¢, so our approximating Markov chain will have
stationary transition probabilities.

To obtain threshold points that depend only on h, let 9myeq:n be the
cross-sectional median of the n; ; , over subjects 4, and let 1,64 meq,n be the
global median of the 9cq: 5 over times t. We informally justify this choice
by the following argument. For a sequence npeq,¢,n,t = 1,...,n with h fixed,
we want to find the optimal value of 1, N,ed,mea,n, Which achieves

Hlninz |P(€t < nmed,t,h) - P(gt < 77)|
t

Note ®(n) = P(& < n), which is strictly increasing,
Nimed,med,h = arg Innlnz |(I)(77med,t,h) - ‘I’(ﬁ)| = arg II%IHZ |77med,t,h - 77|'
t t

Thus our approximate transition probabilities of A’ < h are

P(Yiy1 = hlY; =10") = P (Nmedmed,h—1

< £t+1 < Nlmed,med,h

Timed,med,h’' —1 < £t < nmed,med,h’) .

Approximations for higher order conditional probabilities can be derived
analogously.

4 Properties of the Approximation Procedure

We examine goodness-of-fit of the procedure in the sense that the model
we analyse is close to the data generation processes. First note that the
subjective features introduced are clearly identified, are amenable to robust-
ness analyses, and can be related to the phenomenon under investigation.
Because our procedure is for exploratory data analysis, we neglect standard
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errors to focus on model selection, which seems more important than esti-
mation within a model.

Given the completion of the relocation by (1.1) and the rescaling by (1.2),
we write p(z]') for the density of the stochastic process generating the resid-
uals. This p(z]) is similar to the right-hand side of (2.1); however, (2.1) has
a subscript a which arises only after the Markovization and discretization
have been done.

For a given partition P and a given order r of a Markov chain, we obtain
a parameterization following the procedure of Section 2.1, characterized by
the (transition) parameter . Thus, the joint density of the approximating
Markov chain is pp, o (27). Our task is to identify an estimator & so that
for P rich enough, r high enough and n large enough, we will have

Eznp(Z7) = ppra(ZT)] < € (4.1)

for pre-assigned e. Note that the left-hand side of (4.1) only goes to zero
when card(P), r, and n all go to infinity together.

Expression (4.1) can not be used as it stands because it involves the
unknown density p(z]"). However when the required convergence holds and
the two densities p(Z7') and pp, o(Z]') are bounded, we can replace the
expectation in (4.1) to get

EppalP(Z1) —pp,a(Z7)] <€ (4.2)

in which the expectation is now with respect to pp, a(27), where a is the
true value. Note that going from (4.1) to (4.2) is a change in the density
defining the Ly distance.

If we choose card(P) and r large enough, the density pp, o, generated
from our approximation technique will be so close to the density p(z]) of
the actual stochastic process that we can replace p(2]") by pp,a, in (4.2).
Consequently for card(P) and r large enough and any « taken as true, we
can make n large enough that

By 0y [P0 (Z0) — i (Z1)] < €
for any pre-assigned value of e.
5 Computational Illustrations

We present two examples in this section to illustrate the proposed pro-
cedure, one in an economic context and the other in a biostatistical context.
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5.1 Continuous response example. We tested our techniques by analysing
an economic data set (‘strikes’) that we found at the website lib.stat.cmu.edu.
This data set contains penta-variate time series of annual observations from
1951 to 1980 for 18 OECD countries. (The time series from country 3 ends
at 1980, so we truncated time series from all countries at 1980 for simplicity.)
We regard each country as a subject, so we have five measurements on each
subject at each of 30 years. We took the first of the five variables, unemploy-
ment rate, as the response Y; ;, and the other four variables, strike volume
X 1,1, inflation X ; 5, parliamentary representation of social democratic and
labour parties X;;3, and a time-invariant measure of union centralization
X4, as the covariates. For more details, see Western (1996).

TABLE 1. HISTOGRAMS OF EMPIRICAL ORDERS FOR SEVERAL MODELS

Model Expression Histogram
10 Y ~X; 562311
(2) Y~ X5+ X, 76041
(3) Y~ X1+ X0+ X3 93041
(4) Y~Xi+Xo+ Xy 93321
(5) Y~X1+Xo+X34+Xy 75131

The first stage is to find a collection of explanatory variables so that
the vector of residuals has a recognizable dependence structure. We used
Xt Xig2, Xip3 and X; ;4. For each model, we fit the response to the
covariates for each time and we combined the residual vectors from each
time into a single 18 by 30 matrix. Next we treated each row as a time
series and produced an ACF plot. Each ACF plot gave one empirical order
of autoregressive dependence. Following Section 3.1, we used £2/1/30 as the
cutoff. So, we chose the largest significant time-lag from each ACF plot as the
subject-specific empirical Markov order. Thus we got 18 empirical orders,
one for each country, which we used to generate a histogram. Table 1 lists
the models we examined. The column labelled Histogram lists the number
of subjects (countries) that had empirical orders 1 to 6.

It is seen that the fourth model has the strongest mode at lag 1 and is
unimodal. So, we examine the dependence structure of the residuals from
model (4).

Next, we need a partition size for the discretization. For the economic
variables here, there are periods in which the economy is growing, shrinking,
and flat. So, we chose a partition of cardinality 3. By Proposition 1, we
want the 33rd and 67th percentiles from the distribution of residuals from
model (4). We estimated these percentiles by the sample percentiles obtained
from pooling the entries of the 18 by 30 matrix of residuals, —0.8773 and
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FIGURE 1. RESIDUAL AND DISCRETIZED PROCESSES FOR SUBJECT 1

0.4883. If a residual is equal to —0.8773 or less, it is replaced by —1; if a
residual is between —0.8773 and 0.4883, it is replaced by 0; otherwise, it is
replaced by 1. For instance, Figure 1 displays the first row of the matrix
of residuals (solid line) and the discretized form of these residuals (dotted
line).

We notice that in the discretized process for subject 1, —1 occurs 9 times.
There are four years in which a —1 is followed by another —1; there are five
years in which a —1 is followed by a 0; and no years in which —1 is followed
by 1. So, country 1 contributes four to the frequency of transition from —1 to
—1, five to the frequency of transition from —1 to 0, and zero to the frequency
of transition from —1 to 1. Doing this over all countries and taking the sum
of the counts relative to the total number of transitions provides an estimate
of the 3 x 3 matrix of transition probabilities. For model (4), with partition
size £ = 3 of S = (—o0, —0.8773]USe = (—0.8773,0.4883]US3 = (0.4883, 00},
the matrix of estimated transition probabilities, as in (2.5), is

R 0.7572 0.2139 0.0289

[Pa(ZtESi|Zt_1ESj)L = | 01808 0.6271 0.1921
X

0.0349 0.1802 0.7849

This estimated transition matrix suggests that the unemployment status
tends to stay in its current state with relatively high probabilities 60%-78%
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(the diagonal elements) and that with about 0.2 probability the unemploy-
ment status will change from one state to a neighbouring state, either better
or worse.

5.2 Discrete response example. To illustrate our method in Section 3.3,
we use a data set from the Betaseron longitudinal clinical trial on multi-
ple sclerosis (MS) which compared three dosage levels of interferon beta-1b,
namely zero (placebo), low and high. For more details on the data, refer to
Dyachkova et al. (1997). We model the binary indicator variable of exacer-
bation (Y;; = 1(Yes); 0(No)) in terms of the Kurtzke Expanded Disability
Status Scale (EDSS or X4 1), and the burden of disease (X;;2). We use 13
(K) subjects for whom we had complete data collected from 17 (n) equally
spaced time points.

Given an underlying Gaussian process {U;;} and the threshold points at,
the correspondence relationship is defined by

Y;,t =0« {Ui,t < at} and Yvi’t =1l {Ui,t > at}.

Thus, the probit regression model can be specified by assuming U;; ~
N(Bis, 1) with Bi; = vi1Xie1 + 12Xis2. That is, @7 (uiy) = —miy =
—a¢+v:,1Xi 1,1 +7,2Xi 2. In addition, the marginal probability of exacerba-
tion at time ¢ is p;; = P(Uiy > at), and Ujy — By ~ N(0,1). The maximum
likelihood estimates of the parameters (a¢,ys,1,7v:,2) for t =1,...,17 can be
obtained by a statistical software such as S-plus.

It is worth noting that the probit regression at time step 9 failed because
the Y;jo’s are zero. The estimated threshold point ag = oo and the other
two 7 parameters are both zero. However, this unusual estimates will not
affect our further analysis because we will use a robust median statistic to
estimate the global threshold point.

Our goal is to approximate the first-order transition probabilities. Based
on a 13 by 17 matrix of fitted values of #); ;, we yielded the global median
Nmed,med = 1.129 for the threshold point. Thus, the stationary transition
probability, for example, P(Y; = 1]Y;—; = 0) is approximated by

o (ﬁmed,med) - (I)p (ﬁmed,meda ﬁmed,med)
¢ (ﬁmed,med)

Pp(gt > nmed,med|£t—1 < nmed,med) =

)

(5.1)
where (&;,&-1) ~ N2(0,0,1,1, p). To estimate the correlation p in (5.1) we
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invoke a simple method of moments technique. Note that

E,(YiYii1) = P& >mig, &1 > nip-1)
Po(& > Mgy &—1 > Mig—1)
= 1—=0it) — P(Nit—1) + Pp(Mies it—1)-

&

The approximation error above is negligible since ), ; converges to n; ;. Solv-
ing an unbiased estimating equation,

n

K
SO {YiaYiu 1 — Ep(YigYip 1)} =0, (52)
=1 t=2

leads to a consistent estimator of p (Heyde, 1997). Through the grid point
search algorithm, we found the solution to (5.2), p = —0.26. Analogously,
we get the estimated first-order transition matrix

[ P50[0) Ps0]1) ] [ 0.864 0.945
o= [ PZ(1|0) PZ(lll) ] B [ 0.136  0.055 ]

The (1,2) entry says that a patient experiencing an exacerbation at a given
time step is very likely, nearly 95%, to recover within the next time step
of 6 weeks. The (1,1) entry says that a patient who is not experiencing
an exacerbation at a given time step is relatively unlikely, about 85%, to
experience an exacerbation within the next 6 weeks.
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