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Abstract

Suppose X1; : : : ; Xn are IID p(·|�;  ) where (�;  )∈Rd is distributed according to the prior
density w(·). For estimators Sn=S(X ) and Tn=T (X ) assumed to be consistent for some function
of � and asymptotically normal, we examine the conditional Shannon mutual information (CSMI)
between � and Tn given  and Sn, I(�; Tn|; Sn). It is seen there are several important special
cases of this CSMI. We establish asymptotic formulas for various cases and identify the resulting
noninformative reference priors. As a consequence, we develop the notion of data-dependent
priors and a calibration for how close an estimator is to su9ciency.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Statistical estimation can be regarded as data transmission: some unknown agent
sends us multiple copies of a parameter but due to random error these copies are
corrupted during transmission. The error ridden copies are the data and the goal is to
uncover the message intended, namely the parameter value. This is not the usual way
statisticians think of estimation but it is a valid interpretation justi=ed by information
theoretic reasoning. It is also implicitly assumed by advocates of reference priors.

Reference priors emerge by asymptotically maximizing the Shannon mutual infor-
mation (SMI) between a parameter � and data X = (X1; : : : ; Xn), over the distribution
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for �. The SMI is

I(�;X ) =
∫

p(�; x) log
p(�; x)

p(�)p(x)
d� dx; (1.1)

in which � and x = (x1; : : : ; xn) are outcomes of � and X with the indicated densities.
It has the form of a relative entropy between a joint distribution and the product of
its marginals. In general, an SMI gives a rate of transmission, in bits per unit time.
Its maximum over densities for � gives the capacity. This is the maximal rate of
transmission across the channel de=ned by the conditional density p(xi|�). The density
for � at which this maximum is achieved is called the reference prior by statisticians
or the capacity achieving source distribution by communication engineers. In statistical
terms, the capacity is the maximal amount of dependency the data can have on the
parameter.

One can interpret the SMI in a data compression context as well, and argue that
statistical estimation can also be regarded as data compression: The data set is “com-
pressed” into a single optimal parameter value. Both interpretations—data compression
and transmission—lead to physically plausible optimality principles which permit an
important role for side information. That is, side information improves data transmis-
sion and compression procedures, so we are led to hope that it can improve estimation
procedures too. Henceforth we refer only to the parallel between estimation and data
transmission, neglecting data compression for brevity and ease of exposition.

To seek the improvement aIorded by side information we note that in the pres-
ence of side information, the SMI generalizes to a conditional SMI, CSMI. Formally,
the CSMI we examine here is de=ned as follows. Consider a parameter (�;) =
(�1; : : : ; �d1 ; 1; : : : ; d2 ) with realized values (�;  )=(�1; : : : ; �d1 ;  1; : : : ;  d2 )∈Rd1+d2 .
The parameter is equipped with a prior density w(�;  ), with respect to Lebesgue mea-
sure on Rd, where d = d1 + d2. We will interpret � as a parameter of interest and  
as a nuisance parameter. The entries Xi in the data vector X are conditionally inde-
pendent given (�;  ), having a density with respect to Lebesgue measure denoted by
p(xi|�;  ). We extract two functions from X . They are Tn=T (X )=(T1(X ); : : : ; Td1 (X ))
and Sn=S(X )=(S1(X ); : : : ; Sd2 (X )). We interpret Tn as the primary information we ac-
tually want to use such as an estimator, and interpret Sn as subsidiary side information
such as that arises from estimating nuisance parameters or other more general model-
ing. Thus, Tn will be associated with � and Sn will be associated with . Clearly, the
statistics Sn and Tn have densities derived from p(·|�;  ).

The quantity we wish to maximize asymptotically is the CSMI between � and Tn

given (; Sn), which we denote by I(�;Tn|; Sn). Thus, with some abuse of notation,
the CSMI we examine is

I(�; Tn|; Sn) = E;Sn

∫
p(Tn; �|; Sn) log

p(Tn;�|; Sn)
p(Tn|; Sn)p(�|; Sn)

d� dTn

= E(Tn;Sn;;�) log
p(Tn;�|; Sn)

p(Tn|; Sn)p(�|; Sn)
: (1.2)



B. Clarke, A. Yuan / Journal of Statistical Planning and Inference 123 (2004) 313–345 315

It is seen that the integral is the relative entropy between the joint distribution for Tn

and � conditional on  and Sn and the product of marginals for Tn and Sn, conditional
on  and Sn. When we need it, we will write I(�;Tn| =  ; Sn = s) to mean the
integral in the middle term, without the expectation, evaluated at ( ; s). Clearly, if �
and Tn are independent of  and Sn, the conditioning has no eIect. Also, if � and Tn

are conditionally independent of each other, the CSMI is zero.
Less trivially, partial or side information may arise from the constraint that one must

use a certain estimator such as the test score in item response theory. It might arise
because one is must condition on a certain statistic for other reasons, such as model
selection or hyperparameter estimation. In addition, there might be an importance rank-
ing on the parameters—a vector-valued parameter might divide into two parameters,
one being much more important than the other. This is the setting studied by Berger
and Bernardo (1989).

Here, we asymptotically maximize several CSMI’s over choices of prior density. This
parallels the optimizations commonly used to get reference priors, leading us to de=ne
partial information reference priors, PIRP’s. The forms we derive will show how to
incorporate side information, in the data or parameter, in prior selection. We anticipate
this will lead to better inferences in statistics just as it leads to better data transmission
(and decoding therefrom) in information theory. Our optimizations of CSMI’s involving
nuisance parameters and “nuisance” statistics gives PIRP’s that are often dependent on
the data through Sn. Thus, in many cases, Sn will correspond to helpful side information
which should generally be used. Indeed, using a prior conditional on a function of the
data is much at one with making inferences conditional on the data which is standard
Bayesian practice. The interpretation, and optimality, of the data-dependent priors we
=nd here will be argued in detail in Sections 3 and 4.

Whatever the origin of the partial information, some special cases of (1.1) are famil-
iar quantities. For instance, if Sn is constant,  does not appear, and Tn=X then we get
I(�;X ), the usual SMI between a parameter and the data. This quantity was originally
proposed as the optimality criterion for de=ning reference priors, see Bernardo (1979).
For a formal proof that JeIreys prior (proportional to the root of the determinant of
the Fisher information matrix) is the reference prior in this case see Clarke and Barron
(1994).

If Sn is constant and  does not appear then one has

I(�; Tn)6 I(�;X ); (1.3)

the data processing inequality, see Cover and Thomas (1991). It holds for any density
w(·), with equality if and only if Tn is su9cient for �. It characterizes the loss in in-
formation as a consequence of decoding using only the statistic rather than the full data
set. Since the asymptotics of the right-hand side of (1.3) are well known, an asymp-
totic expression for the left-hand side will permit characterization of the diIerence, see
Section 4.3.

Observe that

I(�;Tn) = ETnD(w(·|Tn)‖w(·));
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the expected relative entropy distance between the posterior for � given Tn, w(�|Tn),
and the prior for �, w(�) used to form it. The outer expectation is taken with respect
to the marginal for the statistic Tn. Here, the relative entropy between two densities for
the same random variable is D(p1(·)‖p2(·)) =

∫
p1(x) log(p1(x)=p2(x)) d�(x). Thus,

maximizing over w(�) gives the prior that is “best” in the sense that the posterior it
gives will be most aIected by the accumulation of data. This is the “missing data”
argument used in Bernardo (1979) for I(�;X ) but applied to Tn. Equivalently, this
gives the best prior to use when one intends to obtain credibility sets from the posterior
w(�|Tn = t) rather than w(�|X = x). Again, it is best in the sense that it is the posterior
that changes most, on average, upon receipt of the data. The justi=cation for the PIRP’s
we derive here is conceptually identical to this original justi=cation of the reference
prior; the only diIerence is that the missing data are conditional.

If Sn is constant and Tn = X then one recognizes I(�;X |) as the quantity used in
Berger and Bernardo (1989) to give a reference prior in the presence of a nuisance
parameter . A heuristic derivation of this reference prior is given in Mukerjee and
Ghosh (1992). More recently there have been numerous investigations of exactly how
the diIerent information content of nuisance parameters and parameters of interest aIect
inference. In particular, reference priors are recommended in their one-at-a-time version,
as explained in the ordered group reference prior work of Berger and Bernardo (1992a),
with as many blocks as parameters. In this case, one has a sequence of unidimensional
optimizations (in �) of the form I(�;X |) so there are as many optimizations as
parameters. This is consistent with the fact that JeIreys prior does not work well in
the simplest multivariate cases (e.g., normal with both parameters unknown). The priors
we derive here probably require the same stepwise treatment.

Also in this case of a nuisance parameter, observe that the Berger–Bernardo pro-
cedure leads to a conditional reference prior w(�| ). This is appropriate for reference
conditional posterior inferences on � given  , but not for marginal inferences on �. In
this case one wants a prior of the form w(�)w( |�) instead of w( )w(�| ). The latter
case is the reverse reference prior, see Mukerjee and Ghosh (1992), which does not
solve the marginalization paradox unlike the direct reference prior. In these cases, when
n is =nite, reference priors are typically discrete, see Berger et al. (1991). However,
the discrete priors often converge to JeIreys prior, see Zhang (1994), see also Berger
and Bernardo (1992b).

An important stream of inquiry has been probability matching. The work of Sun and
Ye (1996) and Phillippe and Robert (1998) considered the =nite sample frequentist
coverage properties of reference priors. More recently, Ghosh and Kim (2001) used
an asymptotic coverage probability argument in a reference prior context to propose
an improved prior for the Behrens–Fisher problem and Eno and Ye (2001) developed
a reference prior using probability matching in a calibration model. An overview of
noninformative priors was provided by Datta and Ghosh (1995)—they investigated
which proposed noninformative priors satis=ed various desired conditions on priors,
including probability matching. See also the extensive listing and discussion in Kass
and Wasserman (1996).

Our interest here will focus on I(�; Tn|Sn), and I(�; Tn|Sn = s) when the n in Sn is
=xed but Tn is permitted to depend on ever more data. This is the form of the CSMI in
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(1.2) that will lead to PIRP’s with new, possibly data-dependent forms. Optimization
for =nite n probably continues to lead to discrete, data-dependent priors for �. How-
ever, as before, when we let n increase in Tn with Sn = s held =xed we get continuous
data-dependent priors. (Optimizing the integral over Sn = s gives data-independent pri-
ors.) Indeed, the reasoning is given heuristically in Corollary 5 of Section 3.2, which
is veri=ed in Example 7 of Section 4.2.

Other methods for dealing with partial information in the prior context were given by
Sun and Berger (1998). In their Theorem 1, for instance, they optimized I(�;X |) to
get a ratio of determinants of variance matrices. This is similar to the result in Theorem
2 below for a very diIerent CSMI; the similarity arises because of the asymptotic
normality we use and the symmetry of the SMI.

We have commented that we get data-dependent PIRP’s. While this may be un-
usual to those who regard optimality in the coherency sense as essential, it would
not be unusual to a communications engineer. For now, we merely note that var-
ious statistical authors have recently used data-dependent priors to achieve better re-
sults. Indeed, Wasserman (2000) produced a data-dependent prior by multiplying
JeIreys prior by the exponential of the sum of an empirical relative entropy and a
maximized relative entropy. Unlike JeIreys prior, Wasserman’s prior gives a proper
posterior and it satis=es a second order probability matching optimality criterion.
Essentially, Wasserman (2000) shows the remarkable fact that all data-independent
priors are worse than his for certain normal mixture models. (See Theorem 1 in
Wasserman, 2000.)

In a maximum entropy context, Mazzuchi et al. (2000a, b) also constructed a
data-dependent prior: To overcome model uncertainty issues they used the data to
get a partition on the real line with respect to which a prior could be speci=ed. This
approach is, like the present setting, basically information theoretic. Moreover, it pro-
vides a justi=cation for the empirical Bayes formulation in which a hyperparameter,
analogous to the partition boundaries, is estimated. See also, Mazzuchi et al. (2000a, b).
Other recent instances where data-dependent priors have been examined include Raftery
(1996), and Richardson and Green (1997).

The information theoretic argument we develop below shows that data-dependent
priors emerge naturally and their information theoretic interpretation will serve sta-
tistical purposes better than coherency-based reasoning when the statistical problem is
closer to data summarization and transmission than it is to the gambling scenarios from
which coherency derives. This is a diIerent line of reasoning from that of Mazzuchi
et al. (2000a, b) who argued on the basis of goodness of =t.

The structure of this paper is as follows. In Section 2 we give the foundational
results needed to get asymptotic expressions for quantities such as (1.2). In Section 3,
we prove our main theorem. It allows us to identify reference priors in the presence of
side information and nuisance parameters when Sn and Tn are functions of a consistent
and asymptotically normal statistic—where the consistency is for a reasonable function
of �. In Section 4, we defend the use of our priors by information theoretic arguments.
Then, we derive some examples of our priors in special cases and show how our results
give a measure of su9ciency. The proofs of the major results are relegated to Section
5, at the end.
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2. Asymptotic normality of the posterior given a CAN statistic

At the heart of our treatment of all these CSMI’s is the behavior of the posterior
density for � given Tn as n increases. This posterior will typically be asymptotically
normal with a variance matrix rePecting greater dispersion than one would get from
use of the full data set. Indeed, the results established here are suggested by writing
I(�;Tn) = H (�) − H (�|Tn) in which H (·) is the entropy and assuming Theorem
1 below applies to H (·|Tn), the expectation of the conditional entropy H (·|Tn = t).
Satisfactory extension of Theorem 1 below would give the asymptotics of H (�|Tn)
and thus our key results. Here, however, we present a diIerent easier proof.

First, we state the asymptotic results we will be applying repeatedly. For simplicity,
we assume the parameter � is of interest and that the nuisance parameter  does not
exist. Our result is for the conditional density of � given a single statistic T = Tn

assumed to be consistent, a.s. P�, for a function of � that we write as �(�). We require
T to be asymptotically normal with a rate

√
n, although any rate �(n) with �(n) → ∞

will do. That is, we assume {Tn} satis=es
√
n(Tn − �(�)) L→N (0; �(�)) (2.1)

in which �(�) is the asymptotic variance matrix.
Let � be the support of w(·). We require � be continuous and have determinant

bounded away from zero and in=nity. That is, we require

0¡ inf
�∈�

|�(�)|6 sup
�∈�

|�(�)|¡∞ (2.2)

and that D� exist, be continuously diIerentiable and satisfy

0¡ inf
�∈�

|D�(�)|6 sup
�∈�

|D�(�)|¡∞: (2.3)

We write its derivative matrix as D�(�) = (@�i(�)=@�j) and assume that D� is every-
where invertible with inverse denoted (D�)−1(�). Note that dim(�)=dim(Tn)=dim(�).
(In fact, this can be relaxed to dim(�) = dim(Tn)¿ dim(�), see Clarke and Ghosh,
1995.)

The proofs of our main results rely on Edgeworth expansions to control error terms.
Indeed, we use an Edgeworth expansion for the density fVn(v|�) of

Vn =
√
n�(�)−1=2(Tn − �(�)) L→N (0; Id): (2.4)

The main Edgeworth condition that we impose is the following.

Condition E. ∃q(·) which is nonnegative, bounded and integrable in Rd, such that as
n → ∞

sup
�∈�

|fVn(v|�) − &d(v)|6 o(1)q(v);

where the o(1) does not depend on v.

Condition E is satis=ed for smooth functions of sample means formed from IID
random variables, see Yuan and Clarke (2003). See also Bhattacharya and Rao (1986,
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Theorem 19.2, p. 192) and Clarke and Ghosh (1995, Proposition 2.1) for similar results.
Reiss (1989, Chapter 4) permits analogous results when percentiles are used in place
of sample means.

Our =rst result gives convergence of the marginal for Tn to a constant. It is the
key result needed for the formal proofs in Section 5. We comment that the following
results hold in the same mode as the convergence of Tn to �(�0), the notation P�0 , a.s.
means the result is true a.s.P�0 or P�0 depending on the mode of convergence of Tn to
�(�0).

Proposition 1. Suppose that Tn is as in (2:1) for � a.e. with respect to w(·), that
Condition E is satis:ed and that �(�) is locally invertible on an open set containing
�0 in the interior of �. Suppose w is continuous and bounded on the parameter
space and positive at �0. Write '(�) = (D�)−1(�)�(�)(D�)−1(�)T , and '(�)1=2 =
(D�)−1(�)�(�)1=2. Let mTn(·) =

∫
w(�)pTn(·|�) be the mixture distribution of Tn with

respect to w(�). Then, as n → ∞,

mTn(·) ∼ w(�0)|(D�)−1(�0)| P�0 ; a:s: (2.5)

Proof. Deferred to Section 5.

Our heuristics for the behavior of the CSMI are based on the following asymptotic
normality result. We comment that a proof of it can be developed from a close study
of the proof of Proposition 1.

Theorem 1. Assume the hypotheses of Proposition 1. For any :xed a; b∈Rd we have
that ∫ �−1(Tn)+'(�−1(Tn))1=2b=

√
n

�−1(Tn)+'(�−1(Tn))1=2a=
√

n
w(�|Tn) d� → +d(b) − +d(a); P�0 ; a:s: (2.6)

as n → ∞, where +d(x) is the distribution function of the d-dimensional standard
normal N (0; Id).

Proof. For detailed proof, see Yuan and Clarke (2003).

In principle, Theorem 1 could be extended to give our main result. However, it
would take a lot of work. Alternatively, we could appeal to frequentist asymptotics:
recognize that I(�; Sn) is the integral over � of the relative entropy between Pm

� (s) and
Mn(s), D(Pm

� (s)‖Mn(s)), and then, parallel to Clarke and Barron (1990), conjecture

D(Pm
� (s)‖Mn(s)) =

d
2

log
n

2-e
+

1
2

log det |IS(�)| + log(1=w(�)) + o(1)

in which IS is the Fisher information of the sampling distribution of the statistic Sn. If
this expression was established uniformly in �, one could integrate it to get the main
results here. This approach would lead to hypotheses on the density of Sn rather than
on the density of the Xi’s which would be harder to verify and interpret. Rather than
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using this frequentist approach or extending Theorem 1, we develop a proof based on
Proposition 1.

3. Implications for reference priors

Here we generalize the established concept of reference priors to include the notion
of partial information discussed in the Introduction. Thus we optimize CSMI’s to =nd
PIRP’s, paralleling the way reference priors are obtained from SMI’s. Recall the refer-
ence prior methodology is to maximize the constant term in an asymptotic expansion
for an SMI. Earlier de=nitions of reference prior, see Bernardo (1979), Berger and
Bernardo (1989, Eq. (5.5)) maximized =rst and then took limits. This is equivalent to
our approach, but is much harder to establish. Others, see Berger and Bernardo (1992b)
de=ned reference posteriors. We prefer to retain the simplicity of the methodological
de=nition. For our purposes here, we de=ne the PIRP to be the result of maximiz-
ing the constant term in an asymptotic approximation, accurate to order o(1), for a
mutual information over a density for one of its arguments. The set over which the
optimization is done may include conditioning in the density and the mutual informa-
tion itself may involve conditioning. The usefulness of this de=nition rests on the fact
that asymptotic approximations for the mutual information found to date depend on the
marginal density only in the constant and lower order terms.

To go beyond the mutual informations studied up to this point, note that the general
quantity (1.2) can be written

I(�;Tn|; Sn) = I(�; Sn; Tn|) − I(�; Sn|): (3.1)

From (3.1) we see that generalizing the Berger–Bernardo context to permit general
statistics Tn in place of X will extend readily to the case that one has a “nuisance
statistic” Sn as well as a nuisance parameter . This follows because (Sn; Tn) in the
=rst term on the right in (3.1) is amenable to the same treatment as Sn in the second
term, so that both terms are CSMI’s between a parameter and a statistic.

Suppose the statistics, Tn and Sn are themselves functions of consistent and asymptot-
ically normal statistics. Generally, this means Tn and Sn are CAN themselves, although
the consistency will be for a function of the parameter and the asymptotic variance of
the statistic will be a transformed version of the asymptotic variance for the consistent
estimator. Write Tn = g1((1=n)

∑
i h1(Xi)) and Sn = g2((1=n)

∑
i h2(Xi)), h = (h1; h2)

and

√
n'(�;  )−1=2

(
1
n

∑
i

h(Xi) − �(�;  )

)
L→N (0; Id) (3.2)

for a nonsingular matrix '(�;  ). The functions g1 and g2 are assumed to have at least
one continuous derivative. The relationship among Tn, Sn, and h is summarized by
�1(�;  ) = g1(�;  ), �2(�;  ) = g2(�;  ), �1(�;  ) = (D�1)(�;  )'1(�;  )(D�1)(�;  ), and
�2(�;  ) = (D�2)(�;  )'2(�;  )(D�2)(�;  ), where 'i means the block of ' giving the
asymptotic variance of (1=n)

∑
j hi(Xj).
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Now, for Zn = (Tn; Sn). We have
√
n(Zn − �(�;  )) L→N (0; �(�;  )) (3.3)

in which �(�;  )=(�1(�;  ); �2(�;  )) where �1(�;  ) is the asymptotic mean of Tn and
�2(�;  ) is the asymptotic mean of Sn. Moreover, the asymptotic variance of Zn is

�(�;  ) =

(
�1(�;  ) c(�;  )

c(�;  ) �2(�;  )

)

in which �1(�;  ) and �2(�;  ) are the asymptotic variances of Tn and Sn, respectively.
The function c(�;  ) is the unspeci=ed asymptotic covariance between Tn and Sn. We
will also use

D�(�;  ) =

(
D�1(�;  ) 0

0 D�2(�;  )

)
:

For future use, we de=ne

Wn =
√
n�(�;  )−1=2(Zn − �(�;  ));

Vn =
√
n�2(�;  )−1=2(Sn − �2(�;  ));

and denote their density functions by fWn(w|�;  ) and fVn(v|�;  ), respectively. We
refer to the left-hand sides as standardized sums. It is seen that Wn and Vn are asymp-
totically normal in distribution.

The main theorem gives the general form of PIRP’s. We limit our attention to the
case that Tn, Sn, and � are continuous. It can be conjectured from the form of the proof
that the result holds when Tn and Sn are discrete. Indeed, the proof of our theorem can
be modi=ed to cover those cases.

3.1. Asymptotic form for PIRP’s

Before stating the main theorem, we state a proposition that will control two of the
terms arising in its proof. Let the entropy, H (Y ), of a random variable Y be de=ned
by

H (Y ) = −
∫

fY (y) logfY (y) dy:

Our statements follow from the main theorem in Barron (1986, p. 338) which gives the
convergence of the entropy of standardized sums under hypotheses weaker than what
we have assumed here. Our proposition gives the convergence of H (Sn) and H (Vn)
when Sn is a function g(·) of a sum of IID random variables.

Proposition 2. Let g(·) be a continuously di?erentiable, vector-valued function of a
vector-valued argument, both of dimension d2. Let h(·) be a d2-dimensional vector-
valued function of Xi, so that h(X1) has a :nite second moment. Set

Sn = g

(
1
n

n∑
i=1

h(Xi)

)
:
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Then we have the following.
(I) If H (Sn) exists and is :nite for some n, then for that value of the parameter,

the standardized sum satis:es

H (Vn) → H (V ) =
d2

2
log(2-e): (3.4)

(II) In addition, for that value of the parameter, the entropy of the transformed mean
satis:es

H (Sn) − d2

2
log

n
2-e

→ 1
2

log(|�(�;  )|): (3.5)

Proof. Deferred to Section 5.

Finally, we give the main theorem. The intuitive content is that the CSMI has
an asymptotic expansion of the form (d2=2) log n plus a constant which we identify,
with error o(1) as n → ∞. One consequence of this is that a reference prior can be
identi=ed. It represents the source permitting the most rapid rate of transmission of
outcomes of Tn, given that both the sender and receiver know the outcome of Sn. It
does not depend on Sn because we have taken the limit as n → ∞. To set up the
statement of the theorem, suppose that  does not appear and let

R(w;Tn;Sn)(�) =
∫ ∫

pTn;Sn(t; s|�) log
pTn;Sn(t; s|�)mSn(s)
mTn;Sn(t; s)pSn(s|�)

dt ds; (3.6)

where mTn;Sn(t; s) =
∫
pTn;Sn(t; s|�)w(�) d� and mSn(s) =

∫
pSn(s|�)w(�) d�. Recall that

dim(T ) = dim(�1) = dim(h1) = dim(�) = d1 and dim(S) = dim(�2) = dim(h2) = d2. (In
fact, we will use d2 =dim( ) in the next section.) For convenience, we use the relation
�(�) = D�(�)'(�)D�(�) for �1, �2, as well as for �. Now, we have the following.

Theorem 2. Assume all the hypotheses of Propositions 1 and 2, and let Zn and Sn be
as in Proposition 2. In particular, assume that |�(�)| is bounded above and bounded
away from zero from below, that �(�) and D�(�) are continuous and invertible.
Suppose w has :nite entropy H (w) and that Condition E is satis:ed for both fWn(·)
and fVn(·).
Then:

(I) We have the asymptotic expansion

lim
n→∞

(
R(w;Tn;Sn)(�) − d1

2
log

n
2-e

)
= log

( |'2(�)|
|'(�)|

)1=2

− logw(�): (3.7)

(II) Assuming expression (3:7) holds uniformly in �, we can optimize

I(�; Tn|Sn) =
d1

2
log

n
2-e

+
∫

w(�) log
( |'2(�)|

|'(�)|
)1=2

+ H (w) + o(1)

(3.8a)
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to :nd that the PIRP w∗(·) for using Tn conditional on Sn is

w∗(�) =
1
C

( |'2(�)|
|'(�)|

)1=2

(3.8b)

where C is the normalizing constant.

Proof. Deferred to Section 5.

We have limited our attention to proper priors since the information theoretic model
requires that the source distribution of the �’s integrate to one. Note that the form of
the optimizing prior here and in the corollaries below is a ratio of asymptotic variances.
This is why Fishers information appears in cases when an e9cient statistic exists as
a function of X . We use this with (1.3) to de=ne relative su9ciency as a parallel to
relative e9ciency in Section 4.3.

Note that noninformative or objective priors such as the one identi=ed in Theorem
2 usually are improper when taken over a whole real space. In practice, one truncates
to a compact set and normalizes to get propriety. This will essentially always lead
to a proper posterior. One can inquire about the limiting properties of the posterior
if one permits the compact set supporting the prior to increase. In general, however,
the resulting posteriors will depend on the sequence of compact sets chosen, even in
normal examples, see Berger and Bernardo (1991). Although this de=ciency seems
unavoidable mathematically, it does make good intuitive sense: If there really is so
little information that the prior is improper, at best it can provide, by the size of its
density, a relative measure of how di9cult it is to estimate a given parameter value.
Otherwise put, there just is not enough information to permit =nite amounts of data to
provide useful inferences.

It seems exceptions can arise only when the tails of the likelihood are so tight that
they overcome the dispersion of the prior with a =nite number of data points. In these
cases, the posterior will be proper even when the prior is not. Moreover, one expects
the resulting inferences will be independent of any increasing sequence of compact sets
because the limiting posterior will be proper.

3.2. Corollaries to the main theorem

When conditioning on two variables there are nine cases to consider: Each ran-
dom variable can be absent, conditioned on as a realized value, and averaged over as
a random quantity. These are: I(�; Tn), I(�; Tn|Sn = s), I(�; Tn|Sn); I(�; Tn| =  ),
I(�; Tn| =  ; Sn = s), I(�; Tn| =  ; Sn), I(�; Tn|), I(�; Tn|; Sn = s), and
I(�; Tn|; Sn).

Theorem 2 handles the third information directly and is the simplest case we can use
as a template to help get asymptotic expressions for the other eight. Indeed, the third
information simpli=es to give a form for the =rst, given below as Corollary 1, and the
second information is seen to be a special case of the =fth (set  constant), handled in
Corollary 5, below. The other six informations are covered directly in the corollaries or
as special cases of them. Without further comment, the proofs are deferred to Section 5.
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Suppose Sn is absent, or equivalently, a constant. Then, we have the following
asymptotics.

Corollary 1. Under the assumptions of Theorem 2, The SMI has the asymptotic form

I(�; Tn) ∼ d1

2
log

n
2-e

+
∫

w(�) log |'1(�)|−1=2 d� + H (�); (3.9)

and the reference prior is

w∗(�) =
1
C

|'1(�)|−1=2 (3.10)

in which C is the normalizing constant.

Remark. In Section 4.3 we will use the diIerence between I(�;X ) and I(�; Tn) to
de=ne an index of su9ciency.

Note that this is consistent with using the chain rule for SMI, I(�;Tn) = H (�) −
H (�|Tn), and approximating the second term by Theorem 1.

Corollary 2. Let  be a nuisance parameter, independent of �, with density !( )
and suppose that dim(Tn)¿ dim(�) and dim(Sn)¿ dim( ). If the densities of Tn and
Sn, and the densities of their normalized forms Wn and Vn, conditioning on both �
and  satisfy the conditions in Theorem 2 we have that the CSMI satis:es

I(�; Tn|Sn;) =
d1

2
log

n
2-e

+
∫ ∫

w(�)!( ) log
( |'2(�;  )|

|'(�;  )|
)1=2

d� d 

+H (�) + H () + o(1); (3.11a)

and the corresponding PIRP given Tn and  is

w∗(�) =
1
C

∫ ( |'2(�;  )|
|'(�;  )|

)1=2

!( ) d : (3.11b)

Remark. This is consistent with what one would expect from using asymptotic ex-
pression on the right-hand side of (3.1).

In Corollary 2, if we let � and  be dependent and =x  =  , we get a variant on
the PIRP found in Theorem 1. If we take Sn to be constant, we get the reference prior
for a statistic, given the nuisance parameter, parallel to Berger and Bernardo (1989).
Indeed, if we set  =  , we have the following.

Corollary 3. Asymptotically, the CSMI given a parameter is

I(�; Tn| ) ∼ d1

2
log

n
2-e

+
∫

w(�| ) log |'1(�;  )−1=2| d�

−H (�| =  ); (3.12a)

in which case the reference prior is

w∗(�| ) =
1
C

|'1(�;  )−1=2|: (3.12b)
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Corollary 3 can be extended to allow conditioning on Sn as well as the :xed value
of  =  . Indeed, the CSMI between � and Tn given Sn given a :xed value  =  
is

I(�; Tn|Sn;  ) =
∫ ∫ ∫

f(Tn;�)(t; �|s;  )fSn(s| )!( )

× log
f(Tn;�)(t; �|s;  )

f(Tn;�)(t|s;  )w(�|s;  )
dt ds d�:

We have the following.

Corollary 4. For :xed  , we have

I(�; Tn|Sn;  ) =
d1

2
log

n
2-e

+
∫ ∫

w(�| ) log

(( |'2(�;  )|
|'(�;  )|

)1=2
)

d�

+H (�| =  ) + o(1): (3.13a)

Thus, the reference prior is

w∗(�| ) =
1
C

( |'2(�;  )|
|'(�;  )|

)1=2

: (3.13b)

As a curiosity observe that if we treat (Sm;), for :xed m, as if it were a whole
parameter like , then we have

I(�; Tn|Sm;)

∼ d1

2
log

n
2-e

−
∫ ∫ ∫

fSm(s| )!( )w(�|s;  ) logw(�|s;  ) ds d� d 

+
∫ ∫ ∫

fSm(s| )!( )w(�|s;  ) log |�1(�; s;  )| ds d� d : (3.14a)

Thus, it would be natural to de:ne the reference prior given (sm;  ) to be

w∗(�|sm;  ) =
1
C

|'1(�; sm;  )|−1=2: (3.14b)

Now, consider the e?ect of “partial ” asymptotics when n → ∞, but the value of
Sn, say Sn = s, is :xed along with  =  . In an information theoretic setting this
corresponds to treating Tn as stochastic but Sn = s as a value available to the sender
and the receiver. That is, we inquire what happens when asymptotics are used on the
inner integral but not on the outer integral in a CSMI. The CSMI between Tn and
� given (Sm;) = (sm;  ) is

I(�; Tn|sm;  ) =
∫ ∫

w(�|sm;  )fTn(t|�; sm;  ) log
fTn(t|�; sm;  )
mTn(t|sm;  )

dt d ;

where

mTn(t|sm;  ) =
∫

w(�| )fTn(t|�; sm;  ) d�:
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Let �(�; sm;  ) be the asymptotic mean of Tn. That is, E(Tn|�; sm;  ) → �(�; sm;  ),
(P�;sm; ); a:s:, with asymptotic variance given by �(�; sm;  ).
As a :nal corollary to Theorem 2, let both  and S = s be :xed. We verify that

(3:28a; b) are valid more formally.

Corollary 5. As n → ∞,

I(�; Tn| ; sm) ∼ d1

2
log

n
2-e

+
∫

w(�|sm;  ) log |'(�; sm;  )|−1=2 d�

−
∫

w(�|sm;  ) logw(�|sm;  ) d�: (3.15)

So, the PIRP given (Sm;  ) = (sm;  ) is the same as in (3:14b).

4. Examples and implications

In the =rst subsection we give more details on the information theoretic interpretation
for PIRP’s. We argue that our priors are good in both a data compression sense of
higher compression rates and in a data transmission sense of higher channel capacity.
This justi=es our presentation of a few standard examples in the next subsection. In
the =nal subsection, we use our notion of PIRP’s to measure how close to su9ciency
a statistic is.

4.1. Information theoretic motivation

It is mathematically apparent that optimization of I(�;Tn|Sn = s) will lead to data-
dependent priors. If the n in the Tn is allowed to increase, these priors will be contin-
uous. The data summarization interpretation of these priors would be that one which
is designing a code for the repeated compression of Tn’s conditional on the random
value of � and on the =xed value of Sn =s. This is a perfectly sensible coding strategy
in some settings. In addition, there is a transmission interpretation of such priors. It
is that many messages � drawn from the data-dependent prior with Sn = s are to be
sent and the receiver will decode them from the corresponding Tn’s received, again
conditional on Sn = s. This latter case is recognized by electrical engineers as part
of a multiple access channel and so is perfectly reasonable in an information theo-
retic sense. Here, we prefer the data transmission interpretation because it is easier to
describe although the data compression interpretation may be more germane statisti-
cally. Conventional Bayesians would reject these interpretations even though reference
priors that are data-independent have an analogous interpretation in terms of repeated
transmission, apart from the conditioning.

Indeed, more general mutual informations permitted by (1.2) arise in network in-
formation theory contexts, such as multiple access channels, broadcast channels, relay
channels, source coding with side information, and rate distortion with side information.
The general point is that Sn represents side information which on average improves
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data compression and transmission. The eIect of conditioning on =xed values depends
delicately on the data and the likelihood, as one would expect.

To a communications engineer, data dependence in source distributions, or priors,
occurs quite naturally as standard modeling in many network information theory set-
tings. Thus, to an engineer, data-dependent priors would not be surprising even though
orthodox Bayesians prefer data-independent priors. The seeming conPict between the
engineer and the orthodox Bayesian is resolved by realizing that the Bayesian invokes
an optimality principle derived from gambling scenarios, whereas the engineer invokes
an optimality principle from data transmission and compression. Under their respective
principles both are right. The question remains to determine which approach—gambling
or information—is appropriate for a given modeling situation. Indeed, if one chooses
the form of the dependence of the prior on the data pre-experimentally then it is not
clear that the coherency arguments are germane. In particular, proofs of the optimality
of data independence do not explicitly construct a betting strategy that achieves the
in=nite gain proved to be possible in the presence of incoherency. One can argue that
a sort of weak coherency such as regarding the prior density itself as a stochastic
function of the data, may be a satisfactory practical resolution to the Bayesian’s proper
concern that the experimenter not use the data to choose a prior to get whatever result
he wants. In particular, one can anticipate a sort of asymptotic coherency if the depen-
dence of the prior on a stochastic function drops out. For instance, this may occur if
the prior depends on a statistic that converges to a =xed value. It is this approach that
we implicitly assume here.

Information theoretic thinking distinguishes between side information in the prior,
or source, and side information in the likelihood, or receiver. Usually, information
theory only supposes side information in the source because there are standard ex-
tensions of the source coding theorem and the rate distortion theorem to give op-
timality in this case, see Cover and Thomas (1991, Chapter 14.8,9), Blahut (1991,
Chapter 9). By the symmetry of the SMI this is equivalent to considering side in-
formation only for the receiver. The presence of side information can only decrease
the entropy or decrease the rate distortion function lower bound. This means that side
information decreases code lengths or increases compression rates—both of which are
desirable.

By contrast, side information is a comparatively unformulated concept in statistics,
despite being well established. Its most obvious form may be the concept of ancillarity.
An ancillary statistic has no direct bearing on estimating a parameter, but may be
helpful because it identi=es which part of the sample space is relevant to the problem
at hand. Orthodox Bayesian thinking usually eschews side information, believing one
should condition on all of the data.

The SMI arises in data transmission because its maximum is the capacity of a
channel. The SMI also arises in data compression because optimizing it de=nes the rate
distortion function, see Cover and Thomas (1991, Chapters 8 and 13). The extension of
the SMI to the CSMI to include conditioning occurs in the analysis of communication
networks and in rate distortion with side information, see Cover and Thomas (1991,
Chapter 14). These extensions are more realistic than examining single user channels
or rate distortion properties in isolation.
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Inference can be regarded as data compression because information from several
random variables is to be combined into one statement in a way that ensures every
message that might be sent, i.e., a data set, can be well represented by a single message
that might be received, i.e., a parameter value. Inference can also be regarded as data
transmission in the sense that one can regard data points as the messages received with
random error by a receiver when the sender really sent the true value of the parameter
many times. In this case, the receiver wants to infer the parameter sent from the data
received. Consequently, the receiver wants the agent sending the data to draw it from
a distribution permitting the highest rate of transmission across the channel de=ned by
the conditional density for (X |�). This will mean that the receiver receives the bits of
data as fast as possible so that inference—uncovering the parameter value—will be as
rapid, in terms of sample size n, as possible too. This is another statistical meaning
for the capacity, equivalent to the notion of dependency used at the beginning of
Section 1.

The multiple access channel supposes several broadcasters each sending data to a
common receiver. The broadcasters are the random variables the statistician gets and
the receiver is the statistician’s client who wants an estimate of a parameter. Thus,
the multiple access channel can be regarded as a sort of crude model for what the
statistician actually does.

The multiple access channel we consider here is de=ned as follows. Two senders
X1 and X2 want to send information to a common receiver Y . The Xi’s can be from
independent trials or they can be statistics calculated from the same data. The senders
must deal with background noise and interference from each other. The conditional
density de=ning the channel is p(y|x1; x2) and it is assumed that the candidate marginals
for the pair (X1; X2) all satisfy p(x1; x2) = p(x1)p(x2). The capacity of a channel
is the maximal rate it can transmit information. The capacity of the multiple access
channel is the closure of the convex hull of all (R1; R2) in the positive quadrant of R2

satisfying

R1 ¡I(X1;Y |X2); R2 ¡I(X2;Y |X1); and R1 + R2 ¡I(X1;X2|Y ):

The value I(X1;Y |X2) is the maximum rate achievable from sender 1 to the receiver
when sender 2 is not sending any information. The maximal value for this rate is
I(X1;Y |X2 = x2) where x2 is the value achieving the maximal conditional information
between X1 and Y . Regarding the multiple access channel as an indexed set of single
user channels (with x2 as the index) I(X1;Y |X2) is the transmission rate achieved.
Indeed, the boundary of the region of (R1; R2)’s has a point which represents the
maximum rate sender 2 can send when sender 1 sends at his maximum rate. A more
complete treatment of this is found in Cover and Thomas (1991, p. 396).

In the present context, we argue for the following procedure. Consider the results
in Corollary 4 or Corollary 5, but assume  no longer appears. That is, we have
asymptotics, and a reference prior from I(�; Tn|sn). As a practical matter, we would
suggest choosing n large enough that it is reasonable to assume the convergence to an
analog of JeIreys prior of the density for � has occurred but that the dependence of
this continuous density for � depends on the statistic sn. As we have seen, the typical
form of reference priors is ratios of standard deviations. So, we suggest that conditional
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on the data dependence, the priors resulting from this procedure will be variants of
JeIreys prior, thereby inheriting invariance properties and matching frequentist coverage
properties much like JeIreys does, but in a conditional sense. Moreover, the other
optimality properties of JeIreys priors, such as good performance in practice, should
carry over as well. Indeed, the only diIerence is the conditioning. We remark that
this amounts to an empirical Bayes approach, which has been well studied in the
literature.

Why not go fully Bayesian? The key reason is that in many cases you can get a
higher rate of data transmission if you condition on some of the data. Moreover, this
makes good sense if the extra information S is not as important as the information in
T . More formally, the expected value of I(�;Tn|Sn = s) over S is I(�;Tn|Sn). When
I(�;Tn|Sn =s) is greater than I(�;Tn|Sn), optimizing I(�;Tn|Sn =s) will give a higher
capacity and it is this capacity which is achieved by a reference prior. In such cases,
the reference prior analysis incorporating dependence on the data will outperform the
reference prior analysis that does not use the extra data. Of course, when I(�;Tn|Sn=s)
is less than I(�;Tn|Sn), the extra information in S = s is not helpful. Doubtless there
are cases where P(I(�;Tn|S = s)¿I(�;Tn|S))¿ 0:5 indicating even odds that data
dependence in the prior is likely to be bene=cial. This amounts to a decision rule for
when to go fully Bayes and when to remain empirical Bayes.

Historically, Bayesians have argued against data dependence in their priors. The
arguments generally take the form of an analysis of betting strategies. A sophisticated
treatment can be found in Purves and Freedman (1969), see also Bernardo and Smith
(1994). There, betting arguments show that as a long run strategy one must post odds
on the basis of a data-independent probability—essentially the prior—or be certain to
go broke. Other arguments can be found in Bernardo and Smith (1994).

Here, we focus on settings in which the task of the statistician is closer to data com-
pression and data transmission than to gambling. In such contexts, coherency arguments
remain mathematically true but fail to encapsulate accurately what the actual modeling
criterion really is. In particular, our procedure merely uses a diIerent optimality cri-
terion which is information theoretic. It remains decision theoretic in that information
theory uses an entropy loss rather than a monetary loss. Moreover, information theory
has a natural interpretation for conditioning on a statistic, as we have done here, rather
than on the full data set. Note there is nothing sacred about entropy loss either: one
can imagine settings in which criteria diIerent from entropy loss and monetary loss
are physically plausible. Such criteria would lead to diIerent classes of priors, some
of which might be data dependent.

4.2. Normal and exponential family examples

In this section we verify that the proposed priors often give recognizable quantities
in typical cases. For completeness, we give one example for Theorem 2, and one for
each of the =ve corollaries, in order. The =rst two are routine in that we obtain priors
that reduce to the usual reference priors. The later ones are new—especially the optimal
data-dependent prior in the last example. In these examples, we assume the Xi’s are
IID according to a parametric family of exponential form, with density function of the
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form

f(x|�) = C(�) exp

(
d∑

i=1

�ihi(x)

)
; (4.1)

with respect to a dominating measure �(x) assumed to have absorbed a data-dependent
factor h(x) already. It is seen that

E(hi(X )) = −@ logC(�)
@�i

; Cov(hi(X ); hj(X )) = −@2 logC(�)
@�i@�j

: (4.2)

Note that we derive only the form of the density of the priors without normalizing.
It is only in speci=c applications that one would truncate to get proper posteriors, or
condition on some of the data to ensure propriety of the posterior.

Example 1. Consider the normal family N (�; :2). Let � = (�; :2). Tn =
∑n

i=1 Xi=n,
Sn =(

∑n
i=1 X 2

i =n;
∑n

i=1 X 3
i =n). Let '(�) and '2(�) be the asymptotic variance matrices

for
√
n(Tn; Sn) and

√
nSn, respectively. Using the formula E(X1 − �)k = (k!=2nn!):2n if

k = 2n, and 0 if k = 2n− 1, we have

'2(�) =

(
2:2(:2 + 2�2) 12:4� + 6:2�3

12:4� + 6:2�3 15:6 + 36:4�2 + 9:2�4

)

and

'(�) =




:2 2:2� 3:2(:2 + �2)

2:2� 2:2(:2 + 2�2) 12:4� + 6:2�3

3:2(:2 + �2) 12:4� + 6:2�3 15:6 + 36:4�2 + 9:2�4


 :

By Theorem 2, the reference prior for � given Sn is

w∗(�) ˙
( |'2(�)|

|'(�)|
)1=2

˙
∣∣∣∣15:4 − 6:2�2 + 9�4

6:2(:4 − 2�4)

∣∣∣∣
1=2

;

which is proportional to 1=: when � = 0. This shows that the reference prior in this
case reduces to the usual reference prior one expects. More generally, when � cannot
be set equal to zero, the criterion for the prior to be well de=ned amounts to saying that
�=:¡ 1, which is much like the signal to noise ratios regularly occurring in multiple
user channels.

Example 2. Consider (4.1) with d = 1, Yi = h(Xi), Tn = Y , and set k(�) = logC(�) so
that '1(�)=Var�(Y1)=k ′′(�). Now,

√
n'−1=2

1 (�)(Tn−�1(�)) L→N (0; 1), so by Corollary
1 the reference prior in this case is

w∗(�) ˙ |'−1=2
1 (�)| = k ′′(�)−1=2:

For a normal family with known variance :2
0 and unknown mean �, we have h1(X )=X ,

C(�) = exp(−� 2=(2:2
0)), and so w∗(�) is proportional to a constant, as expected.
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Example 3. To see that this procedure does give new forms for priors, let � = (�; :2),
� = E(X ) and :2 = Var(X ) and write Tn = ( TX ; S2

n), where S2
n is the sample variance.

De=ne �(�)=�=:2 and set Yi=(Xi; X 2
i ). Now, Yi has mean <(�)=(�; E�(X 2

1 )), and vari-

ance Var(Y1)='(�). Standard asymptotics gives Y a:s:→ < and
√
n(Y−<(�)) L→N (0; '(�)).

For g(y) = (y1; y2 − y2
1), we have �(�) = g(<) and Tn = g(Y ). We get Tn

a:s:→ �(�), and√
n(Tn − �(�)) L→N (0; �(�)), where �(�) = Dg(�)'(�)Dg(�)′. Now, Corollary 1 gives

w∗(�) ˙ |'−1=2(�)|:
For a normal family with unknown mean � and unknown variance :2, we have

h1(X ) = X , h2(X ) = X 2, and C(�) = exp(−�2=(2:2))=
√

2-:2 =
√−�2=- exp(�2

1=(4�2)),
where �1=�=:2, �2=−1=(2:2). Let J=1=(2(:2)3) be the Jacobian of the transformation
from (�; :2) to (�1; �2). By (4.2), we have

'(�) =

(−1=(2�2) �1=(2�2
2)

�1=(2�2
2) (1 − �2

1=�2)=(2�2
2)

)
:

Thus, w∗(�) ˙ J |(−�3
2)1=2|˙ (:2)3=2.

Example 4. Now, consider Example 1 but let :2 be a nuisance parameter with prior
density -(:2) = exp(−:2) and let w∗(�) =w∗(�; :2) be the PIRP from Example 1. By
Corollary 2, the PIRP for � is

w∗(�) ˙
∫

w∗(�; :2)!(:2) d:2 ˙
∫ ∣∣∣∣15:4 − 6:2�2 + 9�4

6:2(:4 − 2�4)

∣∣∣∣
1=2

exp(−:2) d:2:

Example 5. Consider the normal family in Example 1. Let Tn=(
∑n

i=1 Xi=n;
∑n

i=1 X
2
i =n),

we have

'1(�) =

(
:2 2:2�

2:2� 2:2(:2 + 2�2)

)
:

Given :2, by Corollary 3, the PIRP for � is

w∗(�|:2) ˙ |'1(�)|−1=2 ˙ (:2)−3=2:

Example 6. Consider the normal family and Tn and Sn as in Example 1. By Corollary
4, the PIRP for � given :2 is

w∗(�|:2) ˙
( |'2(�)|

|'(�)|
)1=2

˙
∣∣∣∣15:4 − 6:2�2 + 9�4

6:2(:4 − 2�4)

∣∣∣∣
1=2

:

Note that we get the same prior as in Example 1, but the interpretation is diIerent.
The comparison suggests a Pat prior for :.

Example 7. To illustrate Corollary 5, let X1; : : : ; Xn be IID with respect to a mixture
of normal densities given by

>&(x|�1; :2) + (1 − >)&(x|�2; :2);
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where &(x|�; :2) is the density of a N (�; :2). Here we have a three-dimensional param-
eter, so we need a three-dimensional statistic; a one-dimensional nuisance parameter
and a one-dimensional statistic Sm for it. Set Tn = (

∑n
i=1 Xi=n;

∑n
i=1 X 2

i =n;
∑n

i=1 X 3
i =n)

and � = (�1; �2). Setting �′ = E(X1) = >�1 + (1 − >)�2 and (:′)2 = Var(X1) = :2 +
>(1− >)(�1 − �2)2, Example 1 implies that the asymptotic variance matrix of

√
nTn is

'(�; >; :2) equal to


(:′)2 2(:′)2�′ 3(:′)2((:′)2 +(�′)2)

2(:′)2�′ 2(:′)2((:′)2 +2(�′)2) 12(:′)4�′+6(:′)2(�′)3

3(:′)2((:′)2 +(�′)2) 12(:′)4�′+6(:′)2(�′)3 15(:′)6 +36(:′)4(�′)2 +9(:′)2(�′)4


:

Now,

|'(�; >; :2)| = 12(:′)8((:′)4 − 2(�′)4)

= 12(:2 + >(1 − >)(�1 − �2)2)4[(:2 + >(1 − >)(�1 − �2)2)2

− 2(>�1 + (1 − >)�2)4)]:

Let Sm be an estimate of :2 based on X1; : : : ; Xm, and regard > be a nuisance
parameter. By Corollary 5, the PIRP for � given (Sm; >) = (sm; >) is

w∗(�|sm; >)˙ |'(�; >; sm)|−1=2

˙ (sm + >(1 − >)(�1 − �2)2)−2[(sm + >(1 − >)(�1 − �2)2)2

− 2(>�1 + (1 − >)�2)4)]−1=2:

Setting > = 0; 1 gives special cases. In view of the work by Wasserman (2000), the
appearance of a data-dependent prior in a mixture context is no surprise. On the other
hand, the prior here emerged from an optimality criterion diIerent from that used by
Wasserman (2000). Indeed, Wasserman’s prior is optimal but not necessarily unique
even under his criterion. Although any small perturbation of Wasserman’s prior will
also satisfy second order probability matching, it does not appear that our prior can be
regarded as a perturbation of his.

4.3. An index of suCciency

In this section we explicitly indicate the dependence of I(�; Tn) on w(·) by writing
Iw(�; Tn). It is well known, see Kullback and Leibler (1951) that for any w(·)

Iw(�; Tn)6 Iw(�;X );

with equality iI Tn is su9cient for �. Intuitively, the larger Iw(�; Tn) is, the more
information Tn contains about � in the sense that there is a code for the channel
de=ned by (�; Tn) with a higher rate of transmission. That is, the more su9cient Tn

is for �, the faster we can transmit over the channel. We use the SMI as a measure
of how close to su9ciency a statistic is by de=ning

>n = >w;n = exp{2(Iw(�; Tn) − Iw(�;X ))} (4.3)
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as an index of su9ciency for Tn given w. Thus, a su9cient statistic has >n = 1, for all
w and any other statistic is partially su9cient. We see that 06 >n6 1; ∀w(·), with
“=1” iI Tn is su9cient. Taking a supremum over priors w results in a prior w∗(·)
which is the prior with respect to which a given statistic Tn is most su9cient.

Let I(�) be the Fisher information matrix of X , then Clarke and Barron (1994) give
conditions so that

Iw(�;X ) =
d
2

log
n

2-e
+
∫

w(�) log
√

|I(�)| d�−
∫

w(�) logw(�) d� + o(1);

asymptotically. By using this and Corollary 1, we get

>n = exp
{∫

w(�) log
|�−1

1 (�)‖D�1(�)|2
|I(�)| d�

}
+ o(1); (4.4)

a quantity reminiscent of the term optimized in Berger and Bernardo (1989). We denote
the leading term in (4.4) by > and call it the asymptotic index of su9ciency.

This de=nition is reasonable because when Tn and Vn are functions of CAN statistics
and satisfy I(w;Tn) = I(w;Vn) they have the same >. Indeed, suppose Tn can be
expressed as a function of CAN estimator of �:

√
n'(�)−1=2(g(X ) − �) L→N (0; Id),

and Tn = h1(g(X )), �1(�) = h1(�). Then �1(�) = D�1(�)'(�)D�1(�)′. This leads to
w∗(�) = |�−1

1 (�)|1=2|D�1(�)|2=c2, and >n ∼ exp{∫ w(�) log(|�−1(�)‖D�1(�)|2=I(�) d�}.
If �(�) is invertible, then |�−1

1 (�)|2D�1(�) = '−1(�). So we get >(T ) = >(V ) =
exp{∫ w(�) log |'−1(�)|=I(�)) d�}, i.e., when Iw(�; Tn) = Iw(�;Vn), Tn and Vn have
the same asymptotic coe9cient of su9ciency.

Now we consider the relationship between the absolute e9ciency of a CAN statistic
and the su9ciency of a CAN statistic. Note that e9ciency is a local property, but that
su9ciency is a global property. We show that

> = exp
{∫

w(�) log edT;T ′(�) d�
}

; (4.5)

in which

eT;T ′ = eT;T ′(�) =
( |I(�)|
|�1(�)|

)1=d

;

is the ratio of asymptotic variances called the absolute e9ciency. Here, T ′
n is the best

estimator of �(�), with the inverse Fisher information matrix I−1(�) as its asymptotic
variance and both Tn and T ′

n are CAN estimators of �(�). The asymptotic variance
matrix of T (�) is �1(�). If the asymptotic variance of T ′

n is �′
1(�), then we have,

more generally, that

eT;T ′ =
|�′

1(�)|
|�1(�)| :

Indeed, if ?n and ?′n′ are two CAN estimators of �(�),
√
n(?n − �(�)) L→N (0; '(�));

√
n′(?′n′ − �(�)) L→N (0; '(�));
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where n′ = n′(n), then the asymptotic relative eCciency, see SerPing (1980), of {?n}
with respect to {?n′} is de=ned to be

e?;?′ = lim
n→∞

n′(n)
n

:

Now, if
√
n(?′n − �(�)) L→N (0; '′(�));

we get

e?;?′ =
( |'′(�)|
|'(�)|

)1=d

;

and '(�) − I−1(�)¿ 0, for all asymptotic variance matrices '(�) in the sense of
nonnegative de=nite.

Note that from (4.5), when w(·) is degenerate, or eT;T ′(�) is independent of � we
get >= edT;T ′ . In this sense, we can think of a statistic Tn with coe9cient of su9ciency

>n roughly as equivalent to a sub-sample from X with size >1=d
n n.

5. Proofs of major results

Here we have gathered the proofs of Propositions 1 and 2, Theorem 2, and Corol-
laries 1–5. We present them without comment.

Proof of Proposition 1. Let

L(n; a) = �−1(Tn) + '(�−1(Tn))1=2a=
√
n:

We =rst prove

R(n) :=
∫ L(n;b)

L(n;a)
fTn(Tn|�)w(�) d� ∼ w(�0)|(D�)−1(�0)|(+d(b) − +d(a));

P�0 a:s: (5.1)

In fact, for =xed � and n, consider the transformation on the sample space de=ned by

v′ =
√
n�(�)−1=2(t − �(�)): (5.2)

The volume elements transform as dv′ =
√
n�(�)−1=2 dt. Now,

fVn(v
′|�) dv′ =

√
n
d|�(�)−1=2|fVn(

√
n�(�)−1=2(t − �(�))|�) dt

= fTn(t|�) dt; (5.3)

so we have a useful expression for fTn . By use of (5.3) we get that R(n) is

R(n) =
∫ L(n;b)

L(n;a)

√
n
d|�(�)−1=2|fVn(

√
n�(�)−1=2(Tn − �(�))|�)w(�) d�: (5.4)
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Now, having transformed on the sample space to get an equivalent form for R(n) we
recognize that the integral is over the parameter space. We will transform the integral
over � to an integral over @ where for =xed Tn

@ =
√
n(Tn − �(�)) (5.5)

so that d@ =
√
n|(D�)(�)| d� and for each =xed @, we have the inverse transform

� = �n(@) = �−1(Tn −
√
n
−1

@) → �0; P�0 a:s:

In (5.5), unlike (5.2), we have not used the variance matrix �.
To apply (5.5) in (5.4) we transform the domain of integration. Let @n be the upper

limit of the transformed domain of integration. We solve for @n in terms of b from

�−1(Tn −
√
n
−1

@n) = �−1(Tn) +
√
n
−1

'(�−1(Tn))1=2b: (5.6)

Applying �(·) to both sides of (5.6), rearranging terms and using Tn=�(�−1(Tn)) gives

@n =
√
n[�(�−1(Tn)) − �(�−1(Tn) +

√
n
−1

'(�−1(Tn)1=2b))]: (5.7)

Taylor expanding � at �−1(Tn) in the right-hand side of (5.7) gives

@n = (D�)(<)'(�−1(Tn))1=2b; (5.8)

since the
√
n’s cancel, for some < on the straightline joining �−1(Tn) and �−1(Tn) +√

n−1'(�−1(Tn))1=2b.
Similarly, the lower limit of integration is

@n = (D�)(<)'(�−1(Tn))1=2a; (5.9)

where < lies on the straight line joining �−1(Tn) and �−1(Tn) +
√
n−1'(�−1(Tn))1=2a.

Now, (5.5), (5.8), and (5.9) give that (5.4) is∫ @n

@n

|(D�)−1(�n(@))‖�(�n(@))−1=2|fVn(�(�n(@))−1=2@|�n(@))w(�n(@)) d@:

(5.10)

To verify that (5.10) converges to the right-hand side of (5.1), choose A1 and A2

positive and let N be so large that

Un = {‖Tn − �(�0)‖¡A1}
has P�0 -probability close to one and that max(|a|; |b|)=√n¡A2. Henceforth, we assume
xn ∈Un.

For xn ∈Un, for =xed a, b, and for �, D�, �−1, and (D�)−1 with the continuity
and derivative assumptions as above we can choose A3 ¿ 0 as a function of n to be
decreasing to zero so that

‖�n(@) − �0‖¡A3: (5.11)

(Using the de=nition of �n(@), adding and subtracting �−1(Tn), Taylor expanding �−1,
and using the bounds on @ from the domain of integration.)
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Moreover, we also have that

@n → @ ≡ (D�)(�0)'(�0)1=2a; @n → T@ ≡ (D�)(�0)'(�0)1=2b; P�0 a:s:
(5.12)

This follows from using the convergence of Tn to �(�0), the local invertibility of �,
the convergence of �−1(Tn) to �0, and therefore the convergence of '(�−1(Tn))1=2b to
zero. (The latter forces < and < to converge to �0.)

Next we control the appearance of @ in the conditioning argument of fn in (5.10).
We note that @ is an element of [@n; @n], a compact set of uniformly bounded size for
xn ∈Un for =xed a and b. In fact, since @ only appears as the argument of �n which
is always within A3 of �0, to get an upper bound for (5.10) we take suprema over the
values assumed by �n(@) in w and (D�). This gives

sup
‖�−�0‖¡A3

w(�) sup
‖�−�0‖¡A3

(D�)−1(�)

×
∫ D�(�0)'(�0)1=2b

D�(�0)'(�0)1=2a
(|�(�n(@))−1=2|fVn(�(�n(@))−1=2@|�n(@))) d@: (5.13)

We have also replaced the upper and lower limits of integration from (5.8) and (5.9)
in (5.10), obtained from Taylor expansions, with their limits from (5.12). This follows
by adding and subtracting (5.10) in the integral in (5.13): The remainder is negligible
because the integrand is bounded by condition E and the domain of integration has
Lebesgue measure or counting measures going to zero.

Now, we use condition E again. Add and subtract |�(�n(@))−1=2|&d(�(�n(@))−1=2@)
in the integrand and then take a supremum over ‖�− �0‖¡A3, where A3 ¿ 0 is =xed.
By condition E, the term with the diIerence between fVn and &d goes to zero as n
increases. Letting n go to in=nity, and then letting A3 go to zero gives the expression

w(�0)(D�)−1(�0)
∫ D�(�0)'(�0)1=2b

D�(�0)'(�0)1=2a
�(�0)−1=2&d(�(�0)−1=2@) d@

=w(�0)(D�)−1(�0)(+(b) − +(a));

so (5.1) is veri=ed.
Now we prove the conclusion of Proposition 1. First, choose an A¿ 0 and =nd an

M so that
∫ M
−M &(v) dv¿ 1 − A. Now write

m(Tn) = R2(n) + R3(n);

where

R2(n) =
∫

[M1; n ;M2; n]

√
n
d|�(�)−1=2|fVn(

√
n�(�)−1=2(Tn − �(�))|�)w(�) d�; (5.14)

in which

M1 = M1; n = �−1(Tn) −
√
n
−1

'(�−1(Tn))1=2M;

M2 = M2; n = �−1(Tn) +
√
n
−1

'(�−1(Tn))1=2M
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and

R3(n) =
∫

[M1 ;M2]c

√
n
d|�(�)−1=2|fVn(

√
n�(�)−1=2(Tn − �(�))|�)w(�) d�: (5.15)

The same proof as in (5.1), with a and b replaced by −M and M , gives that

R2(n) ∼ w(�0)|(D�)−1(�0)|(+(M) − +(−M)); P�0 a:s:

Consequently, as M → ∞, we have

R2(n) = w(�0)|(D�)−1(�0)|(1 + o(1)); P�0 a:s: (5.16)

Now, it remains to show that R3(n) goes to zero because its domain of integration
excludes the true value �0. Multiplying and dividing by D�, it is straightforward to see
that R3(n) is bounded from below by zero and from above by

sup
�

|(D�)−1(�)|
∫

[M1 ;M2]c

√
n
d|�(�)1=2‖D�(�)|

×fVn(
√
n�(�)−1=2(Tn − �(�))|�)w(�) d�: (5.17)

As before, we use transformation (5.5). This time however, the lower limit of inte-
gration is de=ned from M1 = �= �−1(Tn −@=

√
n) so that @=

√
n(�(�−1(Tn))− �(M1)).

From the form of M1 we see we can use a Taylor expansion of � at �−1(Tn) as we did
in (5.7). Doing the same for the upper limit of integration, we see that the error terms
in that Taylor expansion can be controlled by letting 0¡C¡C¡∞ be the in=mum
and supremum of the absolute value of (D�)(�)'(�)1=2. Now (5.17) is upper bounded
by

sup
�

|(D�)−1(�)|
∫

D[−CM;CM ]c(@)|�((�n(@))1=2|

×fVn(�(�n(@))−1=2@|�n(@))w(�n(@)) d@

6 sup
�

|(D�)−1(�)| sup
�

w(�)
∫

D[−CM;CM ]c(@)|�((�n(@))1=2|

×fVn(�(�n(@))−1=2@|�n(@)) d@; (5.18)

in which we have converted to M from M1 and M2.
Denote the integral in (5.18) by Jn. The integrand of Jn is nonnegative and for each

=xed @ in the domain of integration we have that �n(@) → �0 a.s. P�0 as n → ∞. In
particular, this means that for n large enough �n(@) eventually ends up in N (�0; ?). So,
Condition E can be applied pointwise in �.

Indeed, since �(·) is bounded and continuous, Condition E gives that

|�(�n(@))−1=2|fVn(�(�n(@))−1=2@|�n(@)) → |�(�0)−1=2|&d(�(�0)−1=2@):
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By Condition E and the Dominated Convergence Theorem, we have

lim
n

Jn6
∫

lim
n

(D[−CM;CM ]c(@)|�(�Vn(�(�n(@))−1=2@|�n(@))) d@

=
∫

[−CM;CM ]c
�(�0)−1=2&d(�(�0)1=2@) d@ (5.19)

which is arbitrarily small for large M . Thus (5.16) and (5.19) together gives Proposi-
tion 1.

Proof of Proposition 2. (I) First consider the sum of IID random variables (1=n)
∑n

i=1
h(Xi), and denote its standardized sum by Un. Letting <(�;  )=E�; h(X1), and '(�;  )=
Var�; h(X1), the standardized sum is

Un =
√
n'(�;  )−1=2

(
1
n

n∑
i=1

h(Xi) − <(�;  )

)
:

By Barron (1986, Theorem, p. 338), we have that

H (Un) → d2

2
log(2-e): (5.20)

It is seen that Sn is g applied to (1=n)
∑n

i=1 h(Xi) and Vn is the standardized sum
associated with Sn. Thus, we can use a Taylor expansion to express Vn in terms of Un,
i.e., Vn = Q−1(<n; �;  )Un, where <n lies between (1=n)

∑n
i=1 h(Xi) and <(�;  ). Since

Q−1(<n; �;  ) is a random variable, it is not easy to get the density of Vn in terms of
this Taylor expansion. Now we upper and lower bound H (Un), and prove that both the
bounds tend to −(d=2) log(2-e). Here, we only construct the upper bound, the lower
bound is similar. Let {<′n} be a sequence of random variables each independent of <n,
de=ned on the same measurable space as <n and also converge to <(�) in distribution
uniformly in �. We assume {<′n} is chosen so that the entropy of V ′

n = Q−1(<′n; �;  )Sn

converges to the normal entropy no faster than that of Vn does. More formally, we
suppose that <′n satis=es

lim
n

H (Vn)6 lim
n

H (V ′
n):

Now, let F<′n be the distribution function of <′n. We have

fV ′
n
(x|�;  ) =

∫
|Q(t; �;  )|fUn(Q(t; �;  )x|�;  ) dF<′n(t)

=
∫

|Q(t; �;  )|(fUn(Q(t; �;  )x|�;  ) − &d2 (Q(t; �;  )x)) dF<′n(t)

+
∫

|Q(t; �;  )|&d2 (Q(t; �;  )x)) dF<′n(t)

= o(1) +
∫

|Q(t; �;  )|&d2 (Q(t; �;  )x) dF<′n(t)

→&d2 (Q(�;  ; �;  )x) = &d2 (x);
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where the o(1) is by Condition E, and the resulting limiting density is by Helly’s
theorem (SerPing, 1980, Theorem A (iii), p. 16). Thus, we have

lim
n

H (V ′
n)6−

∫
lim
n

fV ′
n
(x|�;  ) log

(
lim
n

fV ′
n
(x|�;  )

)
dx

= −
∫

&d2 (x) log&d2 (x) dx =
d2

2
log(2-e):

The same lower bound is established by choosing a sequence {<′′n } which converges
more quickly in entropy than {<n} does.

(II) Since the density of Sn can be represented as

pSn(s|�;  ) = nd2=2|�(�;  )−1=2|fVn(
√
n�(�;  )−1=2(s− �2(�;  ))|�;  )|;

we have that

H (Sn) = −
∫

nd2=2|�(�;  )−1=2|fVn(
√
n�(�;  )−1=2(s− �(�;  ))|�;  )

× log(nd2=2|�(�;  )−1=2|fVn(
√
n�(�;  )−1=2(s− �(�;  ))|�;  )) ds:

Transforming the integral and taking the nonstochastic factors out of the argument of
the logarithm gives that the last expression is

−d2

2
log n + log |�(�;  )|1=2 −

∫
fVn(v|�;  ) logfVn(v|�;  ) dv:

By (I), the last term is (d2=2) log 2-e asymptotically so part (II) follows.

Proof of Theorem 2. Observe that

I(�; Tn|Sn) =
∫

w(�)R(w;Tn;Sn)(�) d�: (5.21)

Now, to use Proposition 1, let �′ = (�; �) so that �′ and Zn have the same dimension.
Let w′(�′) = w(�)w(�), pTn;Sn(t; s|�′) = pTn;Sn(t; s|�) and D�(�′) = D�(�). Now,

mTn;Sn(t; s) =
∫

pTn;Sn(t; s|�′)w′(�′) d�′: (5.22)

Part I of the Theorem will follow if we establish an asymptotic form for R(w;Tn;Sn)(�).
For any =xed �, we have

R(w;Tn;Sn)(�) =
∫ ∫

pTn;Sn(t; s|�) log
mSn(s)

mTn;Sn(t; s)
dt ds

+
∫ ∫

pTn;Sn(t; s|�) logpTn;Sn(t; s|�) dt ds

−
∫

pSn(s|�) logpSn(s|�) ds; (5.23)
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so we can apply part (II) of Proposition 2. It gives∫ ∫
pTn;Sn(t; s|�) logpTn;Sn(t; s|�) dt ds ∼ (d1 + d2)

2
log

n
2-e

− log |�(�)|1=2

(5.24)

and ∫
pSn(s|�) logpSn(s|�) ds ∼ d2

2
log

n
2-e

− log |�2(�)|1=2: (5.25)

When (5.24) and (5.25) are used in (5.23), we get

R(w;Tn;Sn)(�) =
∫ ∫

pTn;Sn(t; s|�) log
mSn(s)

mTn;Sn(t; s)
dt ds +

d1

2
log

n
2-e

+ log
( |�2(�)|

|�(�)|
)1=2

+ o(1): (5.26)

Now, to get the asymptotics for R(w;Tn;Sn)(�) we need the asymptotic behavior of the
=rst term in (5.26). When � is the “true” value, Proposition 1 gives

mTn;Sn(t; s) ∼ w′(�′) = w2(�)|D−1�(�)| (5.27)

and

mSn(s) ∼ w(�)|D−1
2 �(�)|: (5.28)

Now, for the =rst term in (5.26), suppose log |D�2(�)|=w(�)|D�(�)|¿ 0. (The proof
is similar when it is less than zero.) Now, for large n, logmSn(s)=mTn;Sn(t; s) is contin-
uous (a.e.) and by Proposition 1 it is bounded. So, since (Tn; Sn)|� converges, P�; a:s:,
to some limit (T; S)|�, it also converges to the same limit in distribution. Thus∫

log
mSn(s)

mTn;Sn(t; s)
dFTn;Sn(t; s|�) →

∫
log

|D�2(�)|
w(�)|D�(�)| dFT;S(t; s|�)

= log
|D�2(�)|

w(�)|D�(�)| : (5.29)

Using (5.29), (5.26) and the relationship �(�) = D�(�)'(�)D�(�), we get (3.7) for
any � in the interior of the support of w.

(II) This is a standard application of the calculus of variations. Let

A(�) =
( |'2(�)|

|'(�)|
)1=2

(5.30)

and let

b(w) =
∫

w(�) logA(�) d�−
∫

w(�) logw(�) d�: (5.31)

Any prior w(·) can be written in the form w(�) =w∗(�) +H<(�), where H is a constant
and <(�) satis=es

∫
<(�) d� = 0. Since w∗(·) achieves the extrema in g(w) with the

constraint
∫
w∗(�) d� = 1, consider

B(w) = b(w) + C
∫

w(�) d�:
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Thus, we seek a constrained extrema with a Lagrange multiplier term. The calculus of
variations gives that a solution must satisfy

0 =
@B(w∗ + H<)

@H

∣∣∣∣
H=0

=
∫

(logA(�) − logw∗(�) − C)<(�) d�: (5.32)

Since <(·) is arbitrary, we must have, for all �, that

logA(�) − logw∗(�) − C = 0;

which is equivalent to

w∗(�) = A(�)=C ∀�: (5.33)

Note that this C is diIerent from the previous one, and the probability density constraint
on w∗(·) gives C =

∫
A(�) d�.

Outline of Proof of Corollary 1. We have that

I(�; Tn) =
∫

w(�)Rw;Tn(�) d�;

in which

Rw;Tn(�) =
∫

fTn(t|�) log
fTn(t|�)
mTn(t)

dt = H (Tn|� = �) −
∫

fTn(t|�) logmTn(t) dt:

By Proposition 2, the =rst term above is asymptotically equivalent to
d1

2
log
( n

2-e

)
− 1

2
log |�1(�)|;

and by (5.28), the second term above is asymptotically equivalent to

logw(�) − log |D�1(�)|:

Outline of Proof of Corollary 2. We rewrite I(�; Tn|Sn;) as

I(�; Tn|Sn;) =
∫ ∫

w(�)!( )R(w;Tn;Sn)(�;  ) d� d ;

where

R(w;Tn;Sn)(�;  ) =
∫ ∫

f(Tn;Sn)(t; s|�;  ) log
f(Tn;Sn)(t; s|�;  )fSn(s| )
fSn(s|�;  )f(Tn;Sn)(t; s| )

dt ds

=
∫ ∫

f(Tn;Sn)(t; s|�;  ) logf(Tn;Sn)(t; s|�;  ) dt ds

−
∫

fSn(s|�;  ) logfSn(s|�;  ) ds

+
∫ ∫

f(Tn;Sn)(t; s|�;  ) log
fSn(s| )

f(Tn;Sn)(t; s| )
dt ds:

Now, by reasoning similar to that in (5.21)–(5.29), the result is true.
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Outline of Proof of Corollary 3. Observe that

I(�; Tn| ) =
∫

w(�| )
(∫

fTn(t|�;  ) logfTn(t|�;  ) dt
)

d�

−
∫

w(�| )
(∫

fTn(t|�;  ) logfTn(t| ) dt
)

d�:

Asymptotically, the innermost integral in the =rst term is

d1

2
log

n
2-e

− log |�1(�;  )|1=2:

As in the proof of Theorem 2, we use

fTn(t| ) ∼ w(�| )|(D1�1(�;  )|)−1;

in the innermost integral of the second term to get

w(�| )|(D1�1(�;  ))−1|;

asymptotically, thereby giving (3.12a). Maximizing (3.12a) over w(·| ) for each =xed
 , we get (3.12b).

Outline of Proof of Corollary 4. We rewrite I(�; Tn|Sn;  ) as

I(�; Tn|Sn;  ) =
∫ ∫ ∫

f(Tn;Sn)(t; s|�;  )w(�| )

× log
f(Tn;Sn)(t; s|�;  )fSn(s| )
f(Tn;Sn)(t; s| )fSn(s|�;  )

dt ds d�

=
∫

w(�| )R′
(w;Tn;Sn)(�| ) d�;

where

R′
(w;Tn;Sn)(�| ) =

∫ ∫
f(Tn;Sn)(t; s|�;  ) log

(
f(Tn;Sn)(t; s|�;  )

Snf(s|�;  )
fSn(s| )

f(Tn;Sn)(t; s| )

)
dt ds

=
∫ ∫

f(Tn;Sn)(t; s|�;  ) log
fSn(s| )

f(Tn;Sn)(t; s| )
dt ds

+
∫ ∫

f(Tn;Sn)(t; s|�;  ) logf(Tn;Sn)(t; s|�;  ) dt ds

−
∫ ∫

fSn(s|�;  ) logfSn(s|�;  ) ds:
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As in the proof of Theorem 2,∫ ∫
f(Tn;Sn)(t; s|�;  ) logf(Tn;Sn)(t; s|�;  ) dt ds

∼ (d1 + d2)
2

log
n

2-e
− log |�(�;  )1=2|;

∫ ∫
fSn(s|�;  ) logfSn(s|�;  ) ds ∼ d2

2
log

n
2-e

− log |�2(�;  )1=2|;

and

f(Tn;Sn)(t; s| ) ∼ w2(�| )|(D1�2(�;  ))−1|;
fSn(s| ) ∼ w(�| )|(D1�(�;  ))−1|:

Then we assemble the above to get the result.

Outline of Proof of Corollary 5. Write

I(�; Tn| ; sm) =
∫

w(�|sm;  )
(∫

fTn(t|�; sm;  ) log
fTn(t|�; sm;  )
mTn(t|sm;  )

dt
)

d�

×
∫

w(�|sm;  )Jn(�; sm;  ):

By Proposition 1

mTn(t|sm;  ) ∼ w(�|sm;  )|D−1
1 �(�; sm;  )|; P(�; sm; ); a:s:

so we have

Jn(�; sm;  ) =
∫

fTn(t|�; sm;  ) logfTn(t|�; sm;  ) dt

−
∫

fTn(t|�; sm;  ) logmTn(t|sm;  ) dt

∼ d1

2
log

n
2-e

− log |�1(�; sm;  )|1=2

−log(w(�|sm;  )|D−1
1 �1(�; sm;  )|)

=
d1

2
log

n
2-e

+ log
|D1�1(�; sm;  )|
|�1(�; sm;  )|1=2 − w(�|sm;  ):

By (II) of Proposition 2, the corollary holds by using the calculus of variations.
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