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Abstract

Estimators based on side information from constraints of the form E[g(X, θ)] = 0,

where θ is a finite-dimensional parameter are popular in many settings. This is so be-

cause, in contrast to likelihood based estimators, they do not require full specification

of the distribution of X. Empirical likelihoods are one class of such constrained op-

timization procedures that have been well-studied from a Frequentist standpoint, but

have only recently been used for Bayesian analysis.

Here, we derive asymptotic expansions for the distance between a prior and the

posterior it generates when applied to an empirical likelihood. By optimizing the leading

prior-dependent term in these expansions we identify reference priors that can be used

for analysis directly or for comparison to other priors. We find that the reference prior

under the relative entropy and Hellinger distances are reciprocal and are based on a

transformation of the expected outer product of the constraint function. The reference

prior under the Chi-square distance is only exhibited as a solution to a calculus of

variations problem.

1 Introduction

Since Owen (1988), Owen (1990), and Owen (1991), empirical likelihood (EL) techniques

have gained popularity largely because they incorporate information for parameter estima-

tion into a non-parametric context by constrained optimization. Despite extensive use in
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the Frequentist context, EL has only recently come into use in Bayesian analysis. Lazar

(2003) observed that the properties of EL are in many respects similar to those of paramet-

ric likelihoods and proposed ways they could be used in Bayesian inference. She presented

several simulations under different conditions to show the effect of prior selection in ELs

was much the same as in independence likelihoods. Further similarities between ELs and

parametric likelihoods have been delineated in Yuan et al. (2009). The implication of this

is that reference priors for ELs may behave similarly to the way reference priors in inde-

pendence likelihoods do. Specifically, they may give slightly narrower credibility sets than

the normal priors with large variances as studied in Lazar (2003). In econometrics, Moon

and Schorfheide (2004) used EL’s for a Bayesian analysis by choosing priors that put most

of their mass on parameter values for which the moment constraint was approximately

satisfied. Recently, Grendar and Judge (2009) established that EL’s can be regarded as a

posterior mode in an asymptotic sense.

Here, our main contribution is the identification of reference priors for empirical likeli-

hood. This is important because, in principle, once a model and prior have been chosen,

the posterior is determined and Bayesian analysis can proceed computationally. Indeed,

automating prior selection – regardless of whether the resulting priors are used to form

credibility sets – can help with posterior exploration. We recall that reference priors are

merely one class of objective priors, see Ghosh (2009) for a recent survey.

In the next section we briefly review the formulation of empirical likelihoods. Then, in

Section 3, we review the concept of reference priors for IID likelihoods, set up the corre-

sponding optimization problem for the EL, and quote a result that will help us solve it.

In section 4, we state our main results giving asymptotic expansions for three distances

between priors and posteriors obtained from ELs and identify the reference priors they gen-

erate. In Section 5, we discuss the implications of our work. Technical details are relegated

to Appendices.

2 Empirical Likelihood

The basic formulation of EL as given by Owen (1988) can be expressed as in Qin and

Lawless (1994) and stated as follows. Let Xn = (X1, ..., Xn) be IID d-dimensional random

vectors with unknown distribution function F and suppose the q-dimensional parameter
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θ = (θ1, . . . , θq)′ is a functional value of F , i.e., there is a function T so that T (F ) = θ.

Write xn = (x1, . . . , xn) to denote outcomes of Xn and x to denote outcomes of an individual

random variable X. Suppose that additional information linking θ and F is available from

a set of functions g(x, θ) = (g1(x, θ), ..., gr(x, θ))′ where r ≥ q and E[g(X, θ)] = 0. The

expectation is taken in the distribution F = FT taken to be true and it is assumed that the

true θ, θT satisfies T (FT ) = θT . Indeed, here we assume that θ is identifiable with respect

to g, i.e., θ∗ 6= θ implies E[g(X, θ∗)] 6= 0.

An expression for the EL can be given as follows. Let F be a distribution function

varying over a class and consider the likelihood

L(F ) =
n∏
i=1

F ({xi}). (2.1)

Now, write wi = F ({xi}) and w = (w1, ..., wn). The EL is subject to the auxilliary infor-

mation constraints from g and achieves

max
w

n∏
i=1

wi subject to
n∑
i=1

wi = 1 and
n∑
i=1

wig(xi, θ) = 0.

Let t = (t1, ..., tr)′ be the Lagrange multipliers corresponding to the constriant with g(x, θ),

then one can derive

wi =
1
n

1
1 + t′g(xi, θ)

and that t = tn(x1, ..., xn, θ) is determined by

n∑
i=1

g(xi, θ)
1 + t′g(xi, θ)

= 0. (2.2)

Note that t = 0 satisfies (2.2), but then wi = 1/n and the side information from g does

not enter the EL. So, we henceforth require t 6= 0 to avoid trivality. Thus, the empirical

likelihood assumes the form

pnθ = p(xn|θ) =
n∏
i=1

1
n

1
1 + t′g(xi, θ)

=
n∏
i=1

wi. (2.3)

Note that even though the data is IID F , (2.3) does not in general factor into a product

of terms each depending on only one of the xis. Thus, ELs are not in general independence

likelihoods (unlike (2.1) ) even though they may be regarded as identical. As such they are

a generalization of IID to permit a dependence structure induced by the constraint. Indeed,

the data enter the constraint symmetrically so we expect that they will remain symmetric
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in the empirical likelihood itself. Because of this dependence, it is difficult to assign priors

to ELs and so Bayesian analysis has been limited. Our main contribution is the extension

of objective Bayes methods to the EL context by deriving reference priors for them.

3 Reference Priors

In a pair of seminal papers, Shannon (1948a) and Shannon (1948b) gave an outline of the

general theory of communication. One of the basic ideas was to reinterpret the conditional

density given a parameter, or likelihood, as an ‘information theoretic channel’. The idea is

that θ is now a message drawn from a source distribution of messages, say Π with density π,

and the sender wants to send the value θ to a collection of receivers. The receivers, however,

do not receive θ exactly. Each receiver for i = 1, . . . , n receives a noisy version of θ, say xi,

from which they want to decode θ. The relationship between the θ sent and the x received

is given by p(x|θ); the difference between a channel and likelihood is that the channel is a

conditional density that will be used repeatedly (with both arguments redrawn) whereas a

likelihood is a function of θ for fixed xn . Now, assume each of the n receivers receives an xi

independently of the rest, but they pool their xis to decode θ. If this process occurs many

times, Shannon showed the rate of information transmission is

I(Θ;Xn) =
∫ ∫

π(θ)p(xn|θ) ln
p(xn|θ)
m(xn)

µ(dxn)µ(dθ), (3.4)

(in nats per symbol) where µ generically denotes a dominating measure for its argument.

The quantity in (3.4) is the (Shannon) mutual information. The natural question is how

large it can be. This is answered by maximizing over W to find the maximal rate, the

capacity of the channel p(·|·). The result is

Πcap(·) = arg max
Π

I(Θ;Xn),

the capacity achieving source distribution. Asymptotically in n, Ibragimov and Hasminsky

(1973) showed Πcap was Jeffreys prior for regular finite-dimensional parametric families.

Bernardo (1979) wrote

I(Θ, Xn) = EmD(π(·)‖π(·|Xn)),
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where, for densities p and q with respect to a common dominating measure, the relative

entropy is

D(p||q) =
∫
p(x) ln

p(x)
q(x)

µ(dx).

That is, the capacity achieving source distribution is the prior that makes the asymptotic

distance between a prior and its corresponding posterior as far apart as possible, on average,

in relative entropy. Bernardo (1979) also called Πcap a reference prior on the grounds that it

could be used as a prior, or more typically, used as a way to assess the amount of information

in a subjective prior.

We comment that reference prior results are asymptotic in n and we assume this without

further comment apart from noting that reference priors obtained for fixed n are usually

discrete, see Berger et al. (1991). Even so, Zhang (1994) provides a convergence result

ensuring the discrete priors converge to Jeffreys prior for many regular parametric families.

Berger and Bernardo (1989) examined a conditional form of the Shannon mutual infor-

mation to identify

arg max
Π

I(Θ;Xn|Ψ)

= arg max
Π

∫
π(θ|ψ)p(xn|θ, ψ) ln

p(xn|θ, ψ)∫
p(xn|θ, ψ)π(θ|ψ)µ(dθ)

µ(dxn)µ(dθ)π(ψ)µ(dψ),

where (Θ,Ψ) = (Θ1, . . . ,Θq,Ψ1, . . . ,Ψ`) and Ψ is a nuisance parameter. A proof for regular

finite-dimensional families can be found in Ghosh and Mukerjee (1992). Further treatment of

the multiparameter case can be found in Berger and Bernardo (1991), Berger and Bernardo

(1992a), and Berger and Bernardo (1992b). Sun and Berger (1998) examined conditional

mutual information further and Clarke and Yuan (2004) gave a complete treatment.

Of recent interest is the work done by Ghosh et al. (2009) and Liu and Ghosh (2009) to

obtain reference priors under alternative measures of distance. They establish that Jeffreys

prior is the reference prior for almost all members of the power divergence family. The

exception is the Chi-square distance for which the prior turns out to be proportional to the

fourth root of the determinant of the Fisher information.

To be precise about the quantities we examine for the EL, write

mn(xn) = m(xn) =
∫
p(xn|θ)π(θ)dθ,

where p(xn|θ) is an in (2.3) , giving posterior

π(θ|xn) =
π(θ)p(xn|θ)
m(xn)

.
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Then, the relative entropy between π(θ|xn) and π(θ) is

D(π(·|xn)||π(·)) =
∫
π(θ|xn) log

π(θ|xn)
π(θ)

dθ;

the Hellinger distance between π(θ|xn) and π(θ) is

H(π(·|xn), π(·)) =
∫

(
√
π(θ)−

√
π(θ|xn))2dθ;

and the Chi-squared distance between π(θ|xn) and π(θ) is

χ2(π(·|xn), π(·)) =
∫

(π(θ|xn)− π(θ))2

π(θ)
dθ.

Here, we examine the expectation of the above three quantities namely

EmnD(π(·|xn)||π(·)) EmnH(π(·|xn), π(·)), and Emnχ
2(π(·|xn), π(·)).

These three distance measures have interpretations that may make them more or less

useful in a given setting. The relative entropy occurs in probabilistic coding theory and

usually represents an amount of information (in nats). The Chi-square distance is familiar

from goodness-of-fit testing, see Clarke and Sun (1997), see also Herve (2007). The Hellinger

distance originates from geometry in which the square root converts a great circle on the

unit sphere to a line segment in a plane. It can be verified that as distances, χ2(p, q) ≥

D(p||q) ≥ H(p, q) for any two densities p, q for which they are defined.

Observe that m(xn) is the Bayes action for estimating Pθ under relative entropy i.e.,

m(xn) = arg min
Q

∫
w(θ)D(Pnθ ||Q)µ(dθ).

and the chain rule for relative entropy gives

D(Pnθ ||Mn) =
n∑
k=1

EmD(Pθ||Mk(·|Xk−1)). (3.5)

However, under Hellinger distance the Bayes action for estimating of Pθ is

mH(xn) =
(∫

w(θ)p(xn|θ)1/2µ(dθ)
)2

= arg min
Q

∫
w(θ)H(Pnθ ||Q)µ(dθ),

and under Chi-square distance the Bayes action for estimating Pθ is

mχ2(xn) =
∫
w(θ)p(xn|θ)2µ(dθ) = arg min

Q

∫
w(θ)χ2(Pnθ ||Q)µ(dθ).
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It is seen that neither is a probability (unless additional constraints are imposed) and neither

satisfies an additive risk condition like (3.5). This means that the reference priors under

Hellinger or Chi-square distance are not for the Bayes action and so need not be least

favorable. However, they do provide priors maximally changed on average by the data.

Note that, to date, almost all reference prior work has been in the regular parametric

family context. However, there are cases, such as EL, in which we do not have a well-defined

IID parametric likelihood. Indeed, as can be seen from (2.3), the EL is stationary but not

independent. However, the stationarity is close enough to independence that MLEs are

consistent and Laws of Large Numbers and Central Limit Theorems hold.

To see this more formally, define the following notation. Let θ be the ‘true’ parameter

value for the observed data and assume θ is in an open set whose closure is compact. Write

li(θ) = logwi(θ) with first derivative denoted l
(1)
i (θ) = ∂li(θ)/∂θ and second derivative

denoted l
(2)
i (θ) = ∂li(θ)/[∂θ∂θ′]. Next, consider the following regularity conditions.

• R1: The constraint function has bounded moments, i.e., E||g(X, θ)||α < ∞ for some

α > 2.

• R2: The outer product matrix Ω = E[g(X, θ)g′(X, θ)] is positive definite.

• R3: The Jacobian matrix D = E[∂g(X, θ)/∂θ] is of rank r.

• R4: The norms ||g(x, θ)|| and ||g′(x, θ)g(x, θ)|| are bounded by an integrable function

function G(x), in each neighborhood of θ.

• R5: The prior π(·) is continuous and the matrix Λ(θ) = D′(θ)Ω−1(θ)D(θ) is invertible.

• R6: The prior π(·) and the l(2)
i (·) for i = 1, . . . , n are bounded.

Denoting the maximum empirical likelihood estimate of θ by θ̂n = arg supθ log p(xn|θ),

we have the following asymptotic results which parallel the corresponding results for regular

IID likelihoods.

Theorem 0. Assume R1–R4. Then θ̂ is consistent and asymptotically normal with asymp-

totic variance matrix Λ−1(θ). That is,

θ̂n → θ a.s. and
√
n(θ̂n − θ)

D→ N(0,Λ−1).

Proof: See Yuan et al. (2009).
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4 Relative Entropy Reference Priors

Equipped with the EL setting of Section 2 and the reference prior formulation of Section 3,

we can now state the first of our main results.

Theorem 1. Assume R1–R6. Then

EmnD(π(·|xn)||π(·)) =
q

2
log

n

2πe
−
∫
π(θ) log

π(θ)
|Λ−1(θ)|1/2

dθ + o(1).

So, the reference prior for the EL under relative entropy is

π∗KL(θ) ∝ |Λ−1(θ)|1/2.

We comment that the proof of the asymptotic expression is a sequence of asymptotically

valid approximations whose convergence identifies the leading terms. The highest order term

depending on the prior is optimized in the usual way to give the reference prior. The same

comment applies to Theorems 2 and 3 below.

Proof: Recall li(θ) = logwi(θ) and l
(2)
i (θ) = ∂2li(θ)/(∂θ∂θ′) and consider the limit of

the mean of the l(2)
i s. As in the proofs of Theorem 1 and 2 in Yuan et al. (2009), we have

wi(θ) =
1
n

1
1 + t′g(xi, θ)

=
1
n

(
1− t′g(xi, θ) + g′(xi, θ)g(xi, θ)O(n−1(log log n))

)
=

1
n

(
1−B′ng(xi, θ) + ||g(xi, θ)||o(n−(1−1/α)(log log(n))

+g′(xi, θ)g(xi, θ)O(n−1(log log n))
)
,

where

Bn =
(

1
n

n∑
i=1

g(xi, θ)g′(xi, θ)
)−1 1

n

n∑
i=1

g(xi, θ).

By using the Taylor expansion ln(1 + x) ≈ x on (4.6) we get

1
n

n∑
i=1

li(θ) = − log n−B′n
1
n

n∑
i=1

g(xi, θ) +
1
n

n∑
i=1

||g(xi, θ)||o(n−(1−1/α)(log log(n))

1
n

n∑
i=1

g′(xi, θ)g(xi, θ)O(n−1(log log n)) +O(n−1 log log n). (4.6)
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Taking second derivatives in (4.6) by using the product rule gives

1
n

n∑
i=1

l
(2)
i (θ) = −

{
2[

∂2

∂θ∂θ′
1
n

n∑
i=1

g′(xi, θ)]
(

1
n

n∑
i=1

g(xi, θ)g′(xi, θ)
)−1 1

n

n∑
i=1

g(xi, θ)

+2[
∂

∂θ

1
n

n∑
i=1

g′(xi, θ)][
∂

∂θ′

(
1
n

n∑
i=1

g(xi, θ)g′(xi, θ)
)−1

]
1
n

n∑
i=1

g(xi, θ)

+
1
n

n∑
i=1

g′(xi, θ)[
∂2

∂θ∂θ′

(
1
n

n∑
i=1

g(xi, θ)g′(xi, θ)
)−1

]
1
n

n∑
i=1

g(xi, θ)

+[
∂

∂θ

1
n

n∑
i=1

g′(xi, θ)]
(

1
n

n∑
i=1

g(xi, θ)g′(xi, θ)
)−1

[
∂

∂θ′
1
n

n∑
i=1

g(xi, θ)]

+
1
n

n∑
i=1

∂2

∂θ∂θ′
||g(xi, θ)||o(n−(1−1/α)(log log(n))

+[
1
n

n∑
i=1

∂2

∂θ∂θ′
g′(xi, θ)g(xi, θ) + 1]O(n−1(log log n))

}
. (4.7)

By the strong law of large numbers, 1
n

∑n
i=1 g(xi, θ) → Eg(X, θ) = 0 a.s., thus for any

θn → θ (P or a.s.), only the fourth term on the right of (4.7) above is asymptotically

non-zero. This gives

1
n

n∑
i=1

l
(2)
i (θn) → − lim

n
[
∂

∂θ

1
n

n∑
i=1

g′(xi, θ)]
(

1
n

n∑
i=1

g(xi, θ)g′(xi, θ)
)−1

[
∂

∂θ′
1
n

n∑
i=1

g(xi, θ)]

= −D′(θ)Ω−1(θ)D(θ) = −Λ(θ), (P or a.s.). (4.8)

We use (4.8) in the following Laplace expansion argument.

By a second order Taylor expansion in Lagrange form, we have

p(xn|θ) = exp{
n∑
i=1

li(θ̂n) +
1
2
n(θ̂n − θ)′[

1
n

n∑
i=1

l
(2)
i (θn)](θ̂n − θ)}, (4.9)

where θn is betwen θ̂n and θ. Similarly,

m(xn) =
∫
π(θ) exp{

n∑
i=1

li(θ̂n) +
1
2
n(θ̂n − θ)′[

1
n

n∑
i=1

l
(2)
i (θn)](θ̂n − θ)}dθ. (4.10)

So,

log
p(xn|θ)
m(xn)

= log
exp{1

2n(θ̂n − θ)′[ 1
n

∑n
i=1 l

(2)
i (θn)](θ̂n − θ)}∫

π(α) exp{1
2n(θ̂n − α)′[ 1

n

∑n
i=1 l

(2)
i (θn)](θ̂n − α)}dα

.
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Let φ(·|θ̂n,Λ) be the q-dimensional normal density with mean θ̂n and covariance matrix

Λ. Now, for any δ > 0,∫
π(α) exp{1

2
n(θ̂n − α)′[

1
n

n∑
i=1

l
(2)
i (θn)](θ̂n − α)}dα

=
∫
||α−θ̂n||≤δ

π(α) exp{1
2
n(θ̂n − α)′[

1
n

n∑
i=1

l
(2)
i (θn)](θ̂n − α)}dα

+
∫
||α−θ̂n||>δ

π(α) exp{1
2
n(θ̂n − α)′[

1
n

n∑
i=1

l
(2)
i (θn)](θ̂n − α)}dα. (4.11)

Write Λn(θn)−1 = −[ 1
n

∑n
i=1 l

(2)
i (θn)], with θn and θ1,n in the ball B(θ̂n, δ) = {α :

||α− θ̂n|| ≤ δ}. Then, the first term on the right in (4.11) is

π(θ1,n)
∫
||α−θ̂n||≤δ

exp{−1
2
n(θ̂n − α)′Λ−1

n (θn)(θ̂n − α)}dα

= π(θ1,n)(2π)q/2n−q/2|Λn(θn)|−1/2

∫
||α||≤δ

√
n
φ(α|0, Iq)dα

∼ π(θ)(2π)q/2n−q/2|Λ−1(θ)|1/2, (4.12)

since δ > 0 is arbitrary. To deal with the second term in (4.11), note that it equals

π(θ2,n)(2π)q/2n−q/2|Λn(θn)|−1/2

∫
||α||>δ

√
n
φ(α|0, Iq)dα = o(n−q/2), (4.13)

for θ2,n and θ3,n in Bc(θ̂n, δ) since π(·) and Λ−1
n (·) are bounded by R6.

By Theorem 0, observe that Yn = n(θ̂n − θ)′Λ(θ)(θ̂n − θ)
D→ χ2

q under p(xn|θ). Since

Eχ2
q = q for ε > 0, we can find M > 0 such that |E[χ2

qI(χ2
q ≤ M)] − q| < ε. Weak

convergence gives E[YnI(Yn ≤ M)] → E[χ2
qI(χ2

q ≤ M)]. Provided n(θ̂ − θ) is uniformly

integrable in Pθ, uniformly for θ, we have E(Yn)→ E(χ2
q) = q as ε→ 0.

Using (4.12) and (4.13) in (4.11) and the result from Theorem 0, we have

EmnD(π(·|Xn)||π(·)) =
∫ ∫

π(θ)p(xn|θ) log
p(xn|θ)
m(xn)

dµ(xn)dθ

∼ −
∫
π(θ)Ep(xn|θ)

(
1
2
n(θ̂n − θ)′Λ(θ)(θ̂n − θ)

)
dθ

+
q

2
log

n

2π
−
∫
π(θ) log π(θ)dθ − 1

2

∫
π(θ) log |Λ−1(θ)|dθ

∼ −q
2

+
q

2
log

n

2π
−
∫
π(θ) log π(θ)dθ − 1

2

∫
π(θ) log |Λ−1(θ)|dθ.�
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5 Hellinger Reference Prior

Next, we state and prove the analogous result for the Hellinger distance.

Theorem 2. Assume R1–R6. Then

EmnH(π(·|xn), π(·)) = (2π/n)q/4E(exp{1
4
χ2
q})
∫
|Λ−1(θ)|1/4π3/2(θ)dθ + o(

1
nq/4

).

So, the reference prior for the EL under the Hellinger metric is

π∗H(θ) ∝ |Λ(θ)|1/2.

Note that the reference prior under the Hellinger distance is the inverse of the reference

prior under the relative entropy.

Proof: It is easy to see that

EmnH(π(·|xn), π(·)) = 2
(

1−
∫ ∫

π(θ)
√
m(xn)p(xn|θ)dµ(xn)dθ

)
. (5.14)

Recalling (4.9) and (4.10) from the proof of Theorem 1, we set up a slight extension

of Laplace’s method by expanding the prior to second order. So, let π(1)(α) = ∂π(α)/∂α

and π(2)(α) = ∂2π(α)/[∂α∂α′] and recall that
∫
α′Aαφ(α|0, Iq)dα = tr(A). Then, taking

convergences in p(xn|θ), we have∫
π(α) exp{1

2
n(θ̂n − α)′[

1
n

n∑
i=1

l
(2)
i (θn)](θ̂n − α)}dα

= (2π/n)q/2|Λ−1(θn)|1/2

×
∫ (

π(θ̂n) + (α− θ̂n)′π(1)(θ̂n) +
1
2

(α− θ̂n)′π(2)(θ2,n)(α− θ̂n)
)
φ(α|θ̂n,Λ−1(θn)/n)dα

= (2π/n)q/2|Λ−1(θn)|1/2
∫ (

π(θ̂n) +
1
n
α′Λ−1/2′(θn)π(2)(θ2,n)Λ−1/2(θn)α

)
φ(α|0, Iq)dα

∼ (2π/n)q/2|Λ−1(θn)|1/2π(θ̂n)
(

1 +
1

2n
tr[Λ−1/2′(θ)

π(2)(θ)
π(θ)

Λ−1/2(θ)]
)

∼ (2π/n)q/2|Λ−1(θ)|1/2π(θ̂n)
(

1 +
1

2n
tr[Λ−1/2′(θ)

π(2)(θ)
π(θ)

Λ−1/2(θ)]
)

∼ (2π/n)q/2|Λ−1(θ)|1/2π(θ). (5.15)

The key term in (5.14) is∫ ∫
π(θ)

√
m(xn)p(xn|θ)dµ(xn)dθ =

∫ ∫ √
m(xn)
p(xn|θ)

π(θ)p(xn|θ)dµ(xn)dθ.

11



So, using the square root of the ratio of (4.9) to (4.10), and (5.15) we have that∫ ∫
π(θ)

√
m(xn)p(xn|θ)dµ(xn)dθ

∼ (2π/n)q/4
∫ (∫

|Λ−1(θ)|1/4π3/2(θ) exp{1
4
n(θ̂n − θ)′Λ(θ)(θ̂n − θ)}p(xn|θ)dµ(xn)

)
dθ

By Theorem 0, θ̂n → θ a.s. and n(θ̂n − θ)′Λ(θn)(θ̂n − θ)
D→ χ2

q under p(xn|θ). So, if the

convergence of the exponent to χ2
q is uniform over θ, we get∫ ∫

π(θ)
√
m(xn)p(xn|θ)dµ(xn)dθ ∼ (2π/n)q/4E[exp{1

4
χ2
q}]
∫
|Λ−1(θ)|1/4π3/2(θ)dθ,

as claimed and

π∗(θ) = arg min
π
{
∫
|Λ−1(θ)|1/4π3/2(θ)dθ subject to

∫
π(θ)dθ = 1}.

Using Lagrange multipliers and taking derivatives of
∫
|Λ−1(θ)|1/4π3/2(θ)dθ − λ

∫
π(θ)dθ

with respect to π(θ) for fixed θ, we get

3
2
|Λ(θ)|−1/4π1/2(θ)− λ = 0, or π(θ) ∝ |Λ(θ)|1/2.�

6 Chi-square Reference Prior

The following result under the Chi-square distance is analogous to Clarke and Sun (1997)

and Ghosh et al. (2009), however, the solution is hard to obtain explicitly.

Theorem 3. Assume R1–R6. Then

Emnχ
2(π(·|xn), π(·)) = (

n

2π
)q/2E[exp{−1

2
χ2
q}]
∫
|Λ(θ)|1/2dθ − n(q−2)/22(q+2)/2πq/2

×E[exp{−1
2
χ2
q}]
∫
|Λ(θ)|1/2tr[Λ−1/2′(θ)

π(2)(θ)
π(θ)

Λ−1/2(θ)]dθ + o(n(q−2)/2).

So, the reference prior for the EL under the Chi-square distance is

π(·) = arg min
π(·)

∫
|Λ(θ)|1/2tr[Λ−1/2′(θ)

π(2)(θ)
π(θ)

Λ−1/2(θ)]dθ, subject to
∫
π(θ)dθ = 1.

Proof: As in Theorem 2, let π(1)(θ) = ∂π(θ)/∂θ and π(2)(θ) = ∂2π(θ)/[∂θ∂θ′] and

recall that
∫
θ′Aθφ(θ|0, Iq)dθ = tr(A). Now, when p(xn|θ) defines the mode of convergence,

12



Taylor expanding gives

∫
π(α) exp{1

2
n(θ̂n − α)′[

1
n

n∑
i=1

l
(2)
i (θn)](θ̂n − α)}dα

∼ (2π/n)q/2|Λ−1(θ)|1/2

×
∫ (

π(θ̂n) + (α− θ̂n)′π(1)(θ̂n) +
1
2

(α− θ̂n)′π(2)(θ2,n)(α− θ̂n)
)
φ(α|θ̂n,Λ−1(θ)/n)dα

= (2π/n)q/2|Λ−1(θ)|1/2

×
∫ (

π(θ̂n) +
1√
n
α′Λ−1/2′(θ)π(1)(θ̂n) +

1
2n
α′Λ−1/2′(θ)π(2)(θ2,n)Λ−1/2(θ)α

)
φ(α|0, Iq)dα

∼ (2π/n)q/2|Λ−1(θ)|1/2π(θ)
(

1 +
1

2n
tr[Λ−1/2′(θ)

π(2)(θ)
π(θ)

Λ−1/2(θ)]
)
. (6.16)

Using the inverse of (6.16), we have that Emnχ
2(π(·|xn), π(·)) equals∫ ∫

π(θ)
p2(xn|θ)
m(xn)

dµ(xn)dθ − 1

=
∫ ∫

π(θ)p(xn|θ)
exp{1

2n(θ̃n − θ)′[ 1
n

∑n
i=1 l

(2)
i (θn)](θ̃n − θ)}∫

π(α) exp{1
2n(θ̃n − α)′[ 1

n

∑n
i=1 l

(2)
i (θn)](θ̃n − α)}dα

dµ(xn)dθ − 1

∼ (
n

2π
)q/2

∫ ∫
|Λ(θ)|1/2

(
1− 1

2n
tr[Λ−1/2′(θ)

π(2)(θ)
π(θ)

Λ−1/2(θ)]
)

× exp{1
2
n(θ̃n − θ)′[

1
n

n∑
i=1

l
(2)
i (θ̃n)](θ̃n − θ)}p(xn|θ)dµ(xn)dθ − 1

∼ (
n

2π
)q/2E[exp{−1

2
χ2
q}]
∫
|Λ(θ)|1/2

(
1− 1

2n
tr[Λ−1/2′(θ)

π(2)(θ)
π(θ)

Λ−1/2(θ)]
)
dθ.�

7 Discussion

It is seen that the reference prior for ELs under Hellinger is based on the reciprocal of

the reference prior under relative entropy and that these differ from the reference prior

under χ2 which is hard to obtain explicitly. This is somewhat different from the treatment

given in Ghosh et al. (2009) who obtained the Jeffreys prior for all members of the power

divergence family except the Chi-square distance. Here, it is only in the relative entropy

case that the reference prior is based on the transformation that makes an efficient CAN

estimator converge to N(0, Iq). Nevertheless, the role of Jeffreys prior is roughly analogous

to Λ−1(θ) = (D′(θ)Ω−1(θ)D(θ))−1.

An examination of the proof of all three theorems reveals a common structure: Ap-

proximate the ratio p(xn|θ)/m(xn) by a Laplace’s method argument, take a function of the

13



density ratio, and examine its limiting expectation using standard results and assumptions.

Consequently, we conjecture that our basic technique extends to any Csiszar f -divergence,

see Csiszar (1967), defined as Df (p||q) = Epf(p/q) for some convex f where p and q are

densities. The power divergence family (whose members often play a role in goodness-of-fit

testing) is contained in this class. Many reference priors could be generated this way, how-

ever, outside the relative entropy case, reference priors do not correspond to least favorable

priors.
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