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Abstract The prequential approach to statistics leads naturally to model list
selection because the sequential reformulation of the problem is a guided search over
model lists drawn from a model space. That is, continually updating the action space
of a decision problem to achieve optimal prediction forces the collection of models
under consideration to grow neither too fast nor too slow to avoid excess variance and
excess bias, respectively. At the same time, the goal of good predictive performance
forces the search over good predictors formed from a model list to close in on the
data generator. Taken together, prequential model list re-selection favors model lists
which provide an effective approximation to the data generator but do so by making
the approximation match the unknown function on important regions as determined
by empirical bias and variance.
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1 Introduction

Model uncertainty in its various guises is the dominant source of uncertainty in
a large class of problems, often from a Bayesian perspective, see Draper (1995),
Gustafson and Clarke (2004) and Czado and Raftery (2006). In predictive contexts, it
is well known that accounting for model uncertainty improves predictive performance,
see for instance the moving block bootstrap, Alonso et al. (2006). This can also be
done by Bayes model averaging, see Leamer (1978), Kass and Raftery (1995), as well
as by Frequentist model averaging methods, see Wolpert (1992), Hjort and Claeskens
(2003) and Wong (1995). Model averages provide improved prediction because pre-
dictions from single model ignores the fact that another plausible model could make
equally good different predictions. Existing model averaging methods rest on using a
fixed model list, so model list uncertainty is an open question.

Here we approach model list uncertainty in the context of averages of additive
models. Our goal is to optimize the predictive error over choice of model list used to
form the average. Since direct optimization is mathematically difficult, we search for
an optimal model list by trying to evolve one as the data accumulate. We start with a
simple initial model list and then add models to it greedily, so as to reduce the residual
error. The predictor, here a Bayes model average, is fixed and the input model list to
the Bayes model average is allowed to vary. Bayes model averages behave differently
from model combinations, see Minka (2000) and differently from data pooling, cf.
Toutenberg and Shalabh (2002)

An important feature of our technique is that the model list search is done prequen-
tially in response to predictive errors in the sense of Dawid (1984), see also Dawid
and Vovk (1999). One of the motivations for prequentialism is increased importance
on validation of modeling strategies, here applied to model list selection. The (weak)
prequential principle can be informally stated as follows: Methods of evaluation of a
predictor should depend on the predictor only through the accuracy of its predictions.
In particular, no other aspect of the modeling strategy should affect its assessment.
Here, this principle is satisfied because the model list reselection depends only on the
difference between the predictions and the observations. Thus, under the prequential
principle two model lists leading to the same sequence of predictions would be indis-
tinguishable. One of the implications of this is that all the comparisons of model lists
can be done without favoring or disfavoring any particular sort; all model lists compete
equally to to help predict the next outcome.

The main reason this approach is important for model list selection is that we will
be searching for model lists rather than finding them through optimization. This means
that the main pressure to find good lists comes from validation of predictions. So, it
is important to validate after each batch of data to rule out poor lists quickly while
constraining the growth of the number of models on the list. Note that the results we
give are averaged over runs so that the specific effects of a sequence of observations
are attenuated. The extensive validation is intended to isolate the effect of the list apart
from the randomness in the data.

More formally, suppose we have a data generator, DG, producing pairs (xi , yi ) one
at a time, according to an underlying true function f ∗. That is, each response is of
the form Yi = f ∗(xi ) + εi , where the εi ’s are independently normally distributed
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Bias-variance trade-off 815

with mean 0 and variance σ 2. To approximate f ∗ consider additive models M of the
form

Y = β0 +
∑

j

β j B j (x) + ε, (1)

where each Bγ is a function of x from an ensemble

B = {B1, B2, . . . , Bq , . . .}. (2)

Typically, B is chosen to be a complete basis. In some settings it is worthwhile to
choose B to be overcomplete in the sense that a linear combination of elements in B

may equal or approximate another element in B. In general, M denotes the model
space derived from B, and M denotes a subset of M, which we call a model list. A
model M as in (1) is an element M j of M = {M1, . . . , Mk}.

The goal here is to find the model list Mopt that minimizes the Predictive Mean
Squared Error (PMSE), i.e.,

Mopt = arg minM⊂M

PMSE(M), (3)

where

PMSE(M) = EPtrue

[
(Y new − Ŷ new)2

]
, (4)

in which the expectation is taken with respect to Ptrue, the density for Y new, and the
estimate Ŷ new is the response predicted for xnew using BMA on M, i.e.,

Ŷ new ≡ BMA(xnew;M),

where BMA represents the Bayes model average. (The dependence of Ŷ new on the
data (xi , yi ) is suppressed in the notation.) This criterion automatically gives spar-
sity because it devolves to a variance bias decomposition and too many terms will
give excessive variance. We have chosen BMA because it is predictively optimal, see
Berger and Barbieri (2004) for instance, and the references therein. However, our
procedure can be applied to other model averaging strategies such as stacking, see
Wolpert (1992).

Various authors have examined the details of model list formation for BMA. For
instance, Raftery et al. (1997) and Hoeting et al. (1999) used a reversible jump MCMC
procedure to generate a list of models on which they could apply an Occam’s win-
dow approach by thresholding the posterior model weights. In a moderate to large
sample context, Clarke and Clarke (2009) used a mixture of random search and back-
wards elimination to generate model lists that would be useful for prediction from the
complexity standpoint.

One of the difficulties with using BMA is that at each stage a prior must be selected.
Here, we have defaulted to the uniform prior because we have ensured our model lists
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816 E. Fokoue, B. Clarke

only contain models of comparable size and hence roughly comparable explanatory
power. Moreover, our lists do not grow too fast in size since only one B j is added at a
time. In narrow contexts such as adding terms in relatively small well-behaved additive
models, the dependence on the prior seems to matter little, Berger and Barbieri (2004)
provides a related example. More generally, prior selection is a major problem because
as W(t) increases the tendency to dilution increases. Dilution is the problem that if
the prior is spread over too many models that are relatively adequate then the prior
probabilities can be so small as to give predictions that are all zero or underweight the
best models severely. This phenomenon was revealed in the work of George (2000)
and George and McCulloch (1993) who proposed priors to overcome it. A uniform
prior on a model list of reasonable size avoids dilution in our examples.

Note that in the strict Bayes sense the overall procedure here is incoherent. How-
ever, the incoherency results from the reselection of the model list at each time step.
We defend this on the basis that the model list is rechosen based on fit and the concept
of fit is not part of the formal Bayesian axiomatization. Once a model list is chosen,
however, we do use the BMA which is the Bayes optimal solution under squared error
loss.

There are two benefits to our overall approach. First, unlike other model averaging
methods we are searching over model lists not just reweighting the models on a fixed
list. When the model list is allowed to change, performance can improve substantially.
Our results show that the predictive error attributable to the model list, when it is
poorly chosen, may be larger than any other source of error, a major weakness in static
model averaging schemes.

Second, the search over model lists leads to a useful variance-bias tradeoff on the
level of the model list paralleling the variance bias tradeoff for model selection or esti-
mation. This means we can, in principle, identify optimal model lists to use in model
averages. Thus, for realism, we have focused here on the case that the true function is
expressed most parsimoniously in one basis but the basis used to form the model list
is different.

The structure of this paper is as follows. In Sect. 2, we review background material
on Bayes model averaging and basis search schemes so that our method can be pre-
sented in Sect. 3. Then, in Sect. 4, we present the details of implementation and a series
of examples. In Sect. 5 we discuss the significance and implications of our results.

2 BMA and basis search

Specification of a BMA setting requires a collection of models, a prior for each model,
and a prior over the class of models. To start, consider a single model of the form
(1) with a sample D(t) = {(xi , yi ), i = 1, . . . , nt } of IID observations, and a subset
W(t) = {Bt1, Bt2, . . . , Btkt } of kt basis functions from B. With εt following a normal
distribution with mean 0 and variance σ 2 as assumed earlier, the normal linear model
with kt explanatory variables is

Y = Xβ + ε, (5)
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Bias-variance trade-off 817

where Y = (Y1, . . . , Ynt )
T with outcome y = (y1, y2, . . . , ynt )

T,β = (β0, β1, β2, . . . ,

βkt )
T, ε = (ε1, ε2, . . . , εnt )

T and

X =

⎡

⎢⎢⎢⎣

1 Bt1(x1) Bt2(x1) . . . Btkt (x1)

1 Bt1(x2) Bt2(x2) . . . Btkt (x2)
...

...
...

...
...

1 Bt1(xnt ) Bt2(xnt ) . . . Btkt (xnt )

⎤

⎥⎥⎥⎦ . (6)

The likelihood comes from Y ∼ N (Xβ, σ 2In). If we use a mean zero normal prior
on β with identity covariance and precision δ, then β ∼ N (0, δ−1Ikt +1) then (5) is
fully specified.

To extend this to a class of models fix kt and let M be a collection of submodels
Mα as in (5) but indexed by α. Each Mα corresponds to a selection of the kt basis
elements in W(t) giving a design matrix Xα , with corresponding β j ’s from β, denoted
βα , equipped with the isotropic prior above. Now, suppose a prior probability on M
has been assigned so that P(Mα) is well-defined. Then, the BMA prediction scheme
based on M can be specified as follows.

Let Y new be the response corresponding to a new design point xnew. The BMA
prediction for Y new is the posterior predictive distribution for an outcome of Y new,
ynew, given by

p(ynew|y) =
∑

Mα∈M
p(ynew|y, Mα)Pr(Mα|y) (7)

where the dependence on the design points has been suppressed in the notation. Now,
the marginal posterior predictive density given model Mα is

p(ynew|y, Mα) =
∫

p(ynew|Mα, βα)p(βα|y, Mα)dβα, (8)

and Pr(Mα|y) is the posterior probability of model Mα , i.e,

Pr(Mα|y) = p(y|Mα)P(Mα)∑
α′ p(y|Mα′)P(Mα′)

, (9)

in which

p(y|Mα) =
∫

p(y|Mα, βα)p(βα|Mα)dβα (10)

is the marginal probability of the data under Mα . If we further assume that σ 2 and δ

are known, then for our normal linear model, it is easy to show that

p(· |Mα) ∼ N (0, σ 2Int + δXαXT
α), (11)
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where Xα is the design matrix for model Mα . Since we do not anticipate the availabil-
ity of any information on individual models in M, we assume a noninformative prior
that puts equal mass on each model in M. Thus, the model probabilities in (9) cancel
out.

Each model Mα corresponds to a selection of Bt, j (x)’s for j = 1, . . . , kt . Since a
given Bt, j (·) may occur in more than one model, in (7), the coefficients for each Bt, j (·)
as α varies can be summed over M to simplify (7). The result is that the prediction
ŷnew for xnew from BMA with model list M is given by

BMA(xnew,M) ≡ β̃0 +
kt∑

j=1

β̃ j B j (xnew),

where

β̃ j =
∑

Mα∈M
Pr(Mα | y)I(B j ∈ W(t))β̂α, j

and β̂α, j is the j-th element in

β̂α =
[
XT

αXα + σ 2δIkt

]−1
XT

αy.

Although assuming both σ 2 and δ are known is unrealistic, in practice these two
parameters can be estimated accurately.

It remains to search over the B j ’s to form good models and good lists of models.
The earliest techniques for basis search came from the signal processing literature in
which the set of functions used to express a waveform is often more general than a
basis and is called a dictionary or frame. The use of dictionaries for signal representa-
tion began with the method of frames, MOF, Daubechies (1988). Another basis search
method is Basis Pursuit, BP, developed by Chen et al. (2001), Chen et al. (1998) and
Chen (1995). At root, BP seeks a representation of the signal i.e., approximation to the
function, with coefficients having minimal �1 norm and the MOF seeks the analogous
representation by enforcing minimal �2 norm on the coefficients.

3 The predictive method

Our method is sequential and has two main components. The first is a search over
elements in B at each t to find W(t) so that model lists can be generated. The second
component is a simple random sampling procedure over classes of models formed
from the admitted basis elements.
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3.1 Our basis search method

Our method rests on successive reduction of distance between the target function and
an emerging approximation. Each search can therefore be summarized as follows:

select one or many B j ∈ B such that d
(
B j , r

)
< τ ,

where d(·, ·) is any suitable distance or dissimilarity measure, r is the residual function
from fitting a model at time t , and τ is a threshold parameter controlling how closely
one requires the candidate B j to match the residual function y. In our work, we used
the norm

d
(
B j , r

) ≡
∥∥∥∥

B j (x)

‖B j (x)‖ − r(x)

‖r(x)‖
∥∥∥∥

p

(12)

as our distance measure where

‖g(x)‖p ≡
(∫

|g(x)|p dx
)1/p

, (13)

but is interpreted empirically. Explicitly, r is the vector r = (r(x1), . . . , r(xn)) and B j

is the vector B j = (B j (x1), . . . , B j (xn)). Thus, as before, the role of the design points
is suppressed in the notation. Note that by normalizing B j and r before computing the
norm of their difference, we have τ ∈ [0, 2].

3.2 Initializing and updating of the process

At each time point t , we have a subset W(t) ⊂ B that contains all the basis elements
contributing to an ever more accurate predictive approximation. We refer to W(t) as
the working basis. We consider two ways of initializing W(t): (a) random (b) non-
random. The simpler is random initialization which consists in randomly drawing one
element from B so that B init ≡ one random draw from B. Non-random initialization
chooses from B the one element closest to the response variable, i.e.,

B init ≡ arg min
Bγ ∈B

d

(
Bγ

‖Bγ ‖ ,
y

‖y‖
)

. (14)

Below, we show some computations using each technique.
We update the working basis W(t) by adding only the best candidate within distance

τ , i.e., we set

W(t) := W(t) ∪
{

Bbest
}
, (15)

where

Bbest ≡ arg min
Bγ ∈B

{
d(Bγ , r) : d(Bγ , y) < τ

}
.

123



820 E. Fokoue, B. Clarke

An alternative is adding all the candidates within distance τ . For orthogonal bases
these two updating techniques are equivalent. However, we add γ ’s one at a time to
avoid admitting too many similar terms when the set of Bγ ’s is overcomplete and may
give collinearity. It is important to avoid this here, since our method does not include
pruning.

3.3 Selecting basis elements and forming lists

The first of the three bases we considered was the set of Fourier sine waveforms
defined on [0, π ]:

B j (x) ≡ sin( jx) with x ∈ [0, π ].

The second was the full Fourier basis set on [−π,+π ]:

B j (x) ≡ sin( jx) or B j (x) ≡ cos( jx).

The third was the set of Chebyshev polynomials on [−1,+1]:

B j (x) ≡ cos( j arccos(x)) where x ∈ [−1, 1].

Once the set B is chosen, the sequential process initializes the working basis W(t) ⊂ B,
and subsequent iterations update W(t) using the residuals and the search method
described earlier. Our process therefore implements a sort of automated residual anal-
ysis to improve the approximation sequentially.

With W(t), one can generate a working model space with up to 2kt − 1 models,
where kt = |W(t)|. For small values of τ , it is very likely that kt will also be small, and
all the relatively few models in the model space may contribute to the approximation.
One might therefore be willing to retain the whole set of 2kt − 1 models of the model
list. In such cases, model list selection reduces to efficient search of the original basis
set B.

As τ gets larger, however, many of the Bγ ’s added are likely to contribute very little
to bias correction while inflating the variance, thereby causing the prediction error to
increase. When kt gets really large as a result of a large τ , the explosive number of
possible models 2kt −1 makes computation prohibitive and leads to inaccuracies from
round-off errors. It therefore makes sense to find ways to select only a subset of M.
Considering the fact that the working basis W(t) consists of screened basis functions
that are deemed close enough to the true underlying target, we have used a random
selection of a proportion μ of models from the explosive list of 2kt −1 models. Clearly,
the first benefit here is the computational convenience although the logical justification
seems solid as well. Heuristically, one could propose setting

μ ≡ 0.95 − τ/2,

when it is positive. This means that as the model space grows larger (as measured by
τ ), the proportion of models drawn from it to form the model list shrinks to guarantee
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the model list remains computationally manageable. (We ignore problems when τ is
close to 2 since such lists are formed using models with high errors.) Typically we
chose values μ = 0.1, 0.25. The exact value of μ seemed to make little difference
qualitatively.

Since we are searching for optimal model lists, we define model lists with different
sizes and complexities. Consider three model averaging strategies (AS), based on their
model lists:

AS ∈ {small, medium, large}

– small: all models of size 1, 2 or 3.
– medium: all models of size kt/2
– large: all models of size kt , kt − 1, or kt − 2.

These model lists are ranked in order of increasing complexity, or size of their ele-
ments. It is seen that the first and third are the same size while the second is larger.
The interplay between size of list and the complexity of models on it is seen in the
computed results of the next section.

3.4 Term formation and overcompleteness

Clearly, sine and full Fourier are qualitatively similar as they are both trigonometric
function sets. Also, as polynomials, Legendre and Chebyshev are qualitatively sim-
ilar. We focused on these two classes, trigonometric and polynomial, and we explored
the effect of combining basis sets from them. This allowed us to assess the gains
derived from this type of overcompleteness in our context. We also considered a sec-
ond type of overcompleteness, the formation of frames from complete sets (bases). We
did this by extending the given basis with a few new elements formed as partial sums
of its elements. Recall that frames may contain elements that, when taken together, are
linearly dependent or in which a sum of elements may be a good approximation for
another element, a sort of near overcompleteness. To form these frames, we defined
three kinds of term formation (TF) strategy. They are:

1. TF = 1: Use W(t) exactly as it is, i.e, no addition (no assessment of overcomplete-
ness)

2. TF = 2: W(t) := W(t) ∪ {
a fraction of sums of pairs fromW(t)

}

3. TF = 3: W(t) := W(t) ∪ {
a fraction of sums of triples fromW(t)

}

For TF ∈ {2, 3}, the number of terms added to W(t) can quickly became explosive.
We therefore introduce an user defined extra parameter ν to control the proportion
of terms added. We chose ν = 0.01, 0.05. As with μ we do not comment further
on ν because its value made little difference qualitatively; its main role was to make
computations evaluating over-completeness regimes feasible.
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3.5 The role of τ

The parameter τ indexes how easy it is to add new terms that could improve the
approximation. Therefore τ controls both the quality, and the size of the model lists
generated from W(t). In fact, as τ increases, our model average involves more and
more models because we have not imposed any parsimony. Using τ to characterize
M, we restate the goal of Eq. 3 as

τopt = arg min
τ∈[0,2]PMSE(τ ). (16)

4 Details of implementation and numerical results

Our procedure has six overall inputs. First, a target function must be given. In practice,
the investigator does not know this. Here we will choose four: a Hill function (in a
sine basis) that looks like a rolling hill and should be easy, Valley function (in a Fou-
rier basis) that has a pronounced minimum, a Mexican Hat function (polynomial and
exponential) which has three regions of high curvature, and a Tooth function (linear
plus exponential) which has a strong single mode on an incline. These are in increasing
difficulty.

Second, data to predict must be generated. In all our examples below, we have used
a noise variance σ 2 = (0.2)2. We chose this value because it ensured a good trade-off
between identifying the target function and retaining enough randomness. Thus, in
the limit of many runs of large length the lower bound for the average prediction error
is σ 2 = .04. Also, our focus in the small sample case, so we took outcomes in batches
of 5 per time step and limited our computations to 10 time steps at most, a total of 50
data points.

Third, an ensemble of functions must be chosen. Here we consider four cases. Three
are bases: Fourier, Chebyshev, sine, representing trigonometric functions and polyno-
mials. The fourth ensemble is the union of Fourier and Chebyshev. Fourth, we must
choose one of the three TF’s to decide which functions are weighted by parameters.
Fifth, we must choose one of the three AS’s to decide which terms get combined.
Finally, we must choose a value of τ ∈ [0, 2].

We have the choice of starting randomly or by initializing the procedure by select-
ing a certain number of ensemble elements based on the initial data that are closer
than randomly chosen elements would be on average. We prefer to choose the best
element from the frame to initialize the predictive process because this is consistent
with how later elements are added.

Given the ensemble and initialization, our predictive procedure applies the chosen
TF and AS strategies. This gives our predictor for the data points from the next time
step. The five residuals from the next prediction stage get used in the iterative proce-
dure to choose the model list for generating the next predictor. Thus, by repeating the
procedure numerous times and averaging the predictive performance from the runs of
length 50, we can track how model uncertainty affects the average prediction error.

Specifically, we generate two kinds of performance graphs. The fist kind of perfor-
mance graph is for a fixed τ to see how the APE decreases from time step to time step
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to give the terminal APE. The second kind of performance graph gives the approxi-
mate final Average Prediction Error, APE, for a given value of τ . After obtaining the
second kind of performance graphs, the first kind of performance graphs for the τ ’s
that gave the maximum and minimum terminal APE could be found and examined.

The running times for the graphs given below depend heavily on the system used to
do the computing. On a Pentium 4 with 1.7 Ghz of CPU speed and 1GB of RAM and
80 GB HD, the simplest case (m = 5, and AS = TF = 1) took 17 min to complete
(with μ, ν in the range of 0.03—0.15). The same case but with m = 10 required
30 min However, on a 1.8 GHz (Intel Xeon) Dual Processor with 512 MB RAM and
80 GB HD, the longest running cases (m = 10, AS = TF = 2) took under five min-
utes. On currently standard equipment (e.g., Intel Core-2-quad, cost USD $1500) we
conjecture the longest running times would be even less.

4.1 The Hill function

As a first example, let f ∗ be the Hill function given in the sine basis by

f ∗(x) = 2 + 2 sin(x) + 1.25 sin(2x) + sin(7x) on [−1, 1].

−1 −0.8 −0.6 −0.4 −0.2 0
x

0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

4

5

6

f(
x)

First, we use the correct, sine, basis for prediction. It is usually unrealistic to assume
knowledge of the correct basis for uncovering a function, however, we start with this
case for comparison purposes. For each of the nine (TF, AS) pairs, we give the perfor-
mance graphs of the second kind and then the performance graphs of the first kind for
the best and worst τ ’s. Then we give the corresponding graphs using model averages
formed from the polynomial Chebyshev basis.

4.1.1 The Hill function sine basis

In Fig. 1, the columns correspond to TF = 1, 2, 3 for AS = 1. The first row shows the
performance graph of the second kind; the second row shows the performance graphs
of the first kind for the τ achieving the knee APE. The first row shows that the graphs
do not depend on the TF strategy. This suggests that term formation does not affect
the variance bias tradeoff in this predictive setting. It is seen that the APE over time
decreases for the best τ ; if the corresponding performance graphs of the first kind
were plotted for the worst τ they are more erratic, sometimes decreasing, sometimes

123



824 E. Fokoue, B. Clarke

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

9
E

st
im

at
ed

 A
ve

ra
ge

 P
re

di
ct

io
n 

E
rr

or
Prediction Error versus tau for BMA = 1 and Basis=sine

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

9

E
st

im
at

ed
 A

ve
ra

ge
 P

re
di

ct
io

n 
E

rr
or

Prediction Error versus tau for BMA = 1 and Basis=sine

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

2

3

4

5

6

7

8

E
st

im
at

ed
 A

ve
ra

ge
 P

re
di

ct
io

n 
E

rr
or

Prediction Error versus tau for BMA = 1 and Basis=sine

1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8
sine, BMA=1, TF=1, Tau=1.70, Runs=100, fAvgPE=0.058

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8
sine, BMA=1, TF=2, Tau=2.00, Runs=100, fAvgPE=0.790

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8
sine, BMA=1, TF=3, Tau=2.00, Runs=100, fAvgPE=1.089

Fig. 1 Hill function in the sine basis with AS = 1; the knee value of τ was around 1.4 in all three cases
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Fig. 2 Hill function in the sine basis with AS = 2; the knee for the first panel was 1.2

increasing, and sometimes just unstable. This may mean that bad τ ’s permit good
models and bad models indiscriminately.

It is seen that the performance curves of the second kind decrease from a peak to
a minimizing value and stay there as τ increases. This is a degenerate V in which the
right arm increase does not happen because the models are small. Such models do not
tend to overfit.

We comment that the rapid increase in APE for small values of τ seen in some of the
performance graphs of the second kind, here and in Figs. 2 and 3, is the consequence
of random initialization. That is, when we used a random initialization, sometimes we
got a rapid increase in APE as the procedure locked onto models that gave improved
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Fig. 3 Hill function in the sine basis with AS = 3; knee values around 1.4, 1.4 and 1.3
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Fig. 4 Hill function in the Chebyshev basis with AS =1

predictions. In Figs. 4 and 5 where we used non-random initialization, this increase
does not appear.

In Fig. 2, the columns correspond to TF = 1, 2, 3, as before, but for AS = 2, medium
sized models. Again, the first row shows the performance graph of the second kind;
the second row shows the performance graphs of the first kind for the τ achieving the
knee or least final APE.

The first row shows a dependence on TF. As TF increases, the strength of the
V-formation increases. This is the only case we found where the value of TF affected
the results. We suspect this is not random variability because the model class for
AS = 2 has mid-sized models: They have k/2 terms midway between the fewest terms,
k=1, 2, 3 and the maximal numbers of terms k, k −1, k −2. Since there are more mid-
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Fig. 5 Hill function in the Chebyshev basis with AS = 2

sized models than large or small ones, and the basis is the same as that of the target
function, it may be that term formation permits a faster search of the models, as
expected from using overcompleteness. In this case, the APE over time decreases for
the worst τ ’s (not shown) as well as the best ones.

In Fig. 3, the columns correspond to TF = 1, 2, 3, as before, but for AS = 3. The
first row shows the performance graph of the second kind; the second row shows the
performance graphs of the first kind for the τ achieving the knee or least final APE.

Like Fig. 1, the first row shows no dependence on TF and the performance curves of
the first kind decrease from a peak to a minimizing value and stay there as τ increases.
As before, the right arm of this degenerate V does not increase. This may be due to
fitting large models with complicated terms: These models fit data readily and may
not overfit because the basis is correct. Averaging over models that do not overfit will
not give errors typical of overfitting. Also as before, we see a smooth decrease in the
row for the best τ ’s.

Aside from the dependence on TF in Fig. 2 in the performance curves of the second
kind that is not seen in the rows of Figs. 1, and 3, the other striking finding here is that
the curves in Fig. 2 are qualitatively different from those in Figs. 1, and 3. Specifically,
as TF increases in Fig. 2, the full V-formation becomes apparent. This is strongest when
the model list is large AS = 2 as opposed to AS = 1, 3 and the terms are most complex.

4.1.2 The Hill function in Chebyshev basis

Here, we have redone the computations from the previous subsection using the Cheby-
shev basis in place of the sine basis. We have also used non-random initialization on
the working basis. The format of the figures is otherwise the same.

In Fig. 4 (AS = 1), TF does not appear to make a difference. The common appear-
ance of the performance graphs of the first kind is increasing. This means that many
small models in the wrong basis may approximate the target function well but that so
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Bias-variance trade-off 827

many are required the variance is large; a small number of small models actually does
best. This is a degenerate V in which the left arm is flat because the bias is not high
enough for small τ ’s. As before, the best τ ’s show a decrease in APE. Although the
graphs are not shown, the performance curves of the first kind for the worst τ ’s are
smoothly increasing meaning that good models are essentially never found.

In Fig. 5 (AS = 2), TF does not appear to make a difference. The common appear-
ance of the performance graphs of the second kind is increasing, qualitatively similar
to Fig. 4 probably with the same interpretation. As τ gets larger, note that there is
instability in the curve: We attribute this to the richness of the model space making the
search for models as τ increases very rough. It is unclear how reliable these values are;
this issue is taken up at the end of this section. As before, the best τ ’s show a decrease
in APE and are quite small. The performance graphs of the first kind for the worst τ ’s
(not given) show a decrease and then an increase in APE over time, indicating an early
decrease in bias and a later increase in variance. Since it happens in all three cases, we
do not attribute this to the TF strategy. We regard this V-formation purely as a result
of cumulative model overfitting from the list.

When the Chebyshev basis is used with AS = 3, the results are qualitatively the
same as for the case AS = 2, but surprisingly cleaner. A stronger V-formation is
observed (with instability for large τ ) in the performance graphs of the second kind.
It may be that because the models for AS = 3 are large, though not as numerous as
for AS = 2, each model on the list may be big enough to provide good approxima-
tion. Thus, as more models are used, APE decreases in the performance graphs of
the second kind until problems with overfit emerge: Overfit from individual models is
leading to overfitting of the model list. The performance graphs of the first kind admit
interpretations as before.

4.2 The Valley function

The function

f ∗(x) = 2 + sin(x) + 0.5 cos(x) x ∈ [−π, π ]

shown below, is expressible with finitely many terms from the Fourier basis. We have
included it for contrast with the Hill function expressible in the sine basis.

−4 −3 −2 −1 0

x
1 2 3 4

3

2.5

2

1.5

1

0.5

f(
x)

The results for the Valley function in the Fourier basis are shown in the first five
panels of Fig. 6. (We have only shown five of the nine possible graphs for brevity.)
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Somewhat like the Hill function case, the V-formation strengthens as either the model
list size or the term complexity increases. That is, for AS = 1, 3 and TF = 1 we
get a degenerate V that does not increase as τ gets close to 2. But as the model list
increases, AS = 2, or term complexity increases, TF = 3 the V-formation strength-
ens. This is borne out in the sixth panel using AS = 3 and TF = 1 which essentially
only decreases. (Any increase for large τ is slight.)

So, far the examples suggest that full V-formation only occur when the models or
model list is sufficiently complex. This tends to be the case in the examples below,
where we focus more on the mismatch between the modeling basis and the target
function.

4.3 The Mexican Hat function

The symmetric function

f ∗(x) = (1 − x2) exp(−0.5x2) x ∈ [−2π, 2π ]

shown below, is not expressible with finitely many elements from the bases here.

−6 −4 −2 0 2 4 6

1

0.5

0

−0.5

The results for the Mexican Hat are shown in Fig. 7. Rows correspond to the bases
Chebyshev and Fourier; columns correspond to AS = TF ∈ {1, 2, 3}. We have set
these two equal for this case because the TF value either strengthened the V-formation
(when it was large) or did did not appear to make much difference.

Only performance curves of of the second kind for APE for Chebyshev over
τ ∈ [0, 2] are shown. It is seen that these performance graphs exhibit, to varying
degrees, the expected V-formation. Indeed, the strength of the V-formation increases
from left to right as expected. Although not shown, when Fourier is used, the results
are qualitatively similar, and when the two bases are combined small and large models
evidence a weak V, while mid-size models do not appear able to discriminate over
model richness as summarized by τ .

4.4 The Tooth Function

The function

f ∗(x) = x + 9

4
√

2π
exp

[
−42(2x − 1)2

]
x ∈ [0, 1]
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shown below, is not expressible with finitely many elements from the bases we have
consid ered here. In addition, it is asymmetric. However, unlike the earlier examples
it is localized.

The results for the tooth are shown in Fig. 8. The row corresponds to the Chebyshev
basis; columns correspond to AS = TF ∈ {1, 2, 3}. All are performance curves of
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Fig. 6 Second performance curves for the Valley function. The first two plots have AS = 1 and TF = 1.3.
The third has AS = 2 = TF. On the second row, the first two have AS = 3 and TF = 1.3, all in the Fourier
basis. The last plot has AS = 3 and TF = 1 using Chebyshev
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Fig. 7 Mexican Hat function in the Chebyshev and Fourier bases
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Fig. 8 Tooth function in the Chebyshev basis

the second kind for APE over τ ∈ [0, 2]. The results for the Fourier basis and the
combined Chebyshev–Fourier basis are qualitatively similar to the Chebyshev basis.

It is seen that these performance graphs exhibit, to varying degrees, the expected
V-formation. Again, the V-formation strengthens as AS increases; the value of TF
either strengthened the V-formation (when it was large) or did did not appear to make
much difference.

For all bases, the AS = 1 column showed a degenerate V that does not increase as τ

gets close to 2. This may indicate that for highly localized functions such as the tooth,
small models only fit well when it is easy to add terms. However, moderate sized mod-
els and large lists, or large models even if fewer (AS = 3) lead to clear V-formations.
In this example, the combined basis did not lead to instability and higher error, but the
best predictive error of the combined bases in (c) did not out perform the individual
bases in (a) and (b).

4.4.1 Summary

Overall, the graphs presented here look somewhat rough or choppy. There are two rea-
sons for this. First, the results from some test cases show that many of the rough parts
of the graphs would smooth out if the number of iterations were increased enough.
We have not done this because we wanted to see the effect of the running time in the
accuracy. Second, the matrix manipulations to obtain BMA predictions involve large
matrices. So, small approximation errors can become self-reinforcing. Even with very
high precision computing, model averages can be unstable because slight changes to
models can give big differences in predictive performance.

An intriguing possibility is that, in some cases, the roughness of the curves may in
fact be real. Consider the Valley function with AS = TF = 1. The top two panels of
Fig. 9 show the same computation as in the top left panel of Fig. 6, but done on different
grids for τ . It is seen that the spike near 1 shifts to about 1.3, but the spike remains.
There genuinely seems to be a secondary peak, that may indicate some unexpected
property of the approximation process. For instance, the search for a good model list,
as a function of τ , generally finds improvement as τ increases except that near τ = 1.3
the search has unfortunately climbed a hill in model space before resuming its descent.

Thus, apart from accidental hill climbing on the least final APE surface (as a func-
tion of the model lists), every performance graph of the second kind we have shown
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Fig. 9 Valley function in Fourier, TF = AS = 1. The top row is two further versions of the second perfor-
mance curve. The APE as a function of the models may be quite rough. The bottom row shows the fit from
the best value of τ and the fit from the worst value of τ . The curve on the left drops quickly to the error
variability 1/4. The curve on the right is erratic due to the instability of predictive error

corresponds to a V formation, or a degenerate V formation. For instance, a decreasing
pattern down to a minimal value at which the curve is constant only occurs for small
model lists; AS = 1 and AS = 3 for instance are smaller lists than AS = 2. (The mod-
els in AS = 3 are larger than in AS = 1, 2 but fewer in number.) Thus, all decreasing
patterns occur with them, except for Hill in its own basis with TF = 1 which we explain
by overcompleteness. Hill, in its own basis with AS = 3, is a bit of an exception in the
sense that when we used other functions we found a proper V-formation as expected.
This partial exception may reflect that the sine basis is parsimonious for hill and so
stabilizes effectively.

An increasing pattern often occurs when the basis used is wrong. It is exacerbated
when the models are relatively small, AS = 1, and sometimes when AS = 2. Both
situations make it difficult to include as many terms as necessary for good function
approximation.

A complete V formation tends to appear weakly with AS = 2, and strongly with
AS = 3. This is typically enhanced by larger values of TF. The exceptions are hill in
its basis which we have already discussed and the MexicanHat with AS = 3 when
Fourier and Chebyshev are combined. This latter case may be a very weak V, but
combining bases may reduce bias so quickly that it seems constant initially, until
increasing variance causes the rise in APE.
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5 Implications for model list selection

Overall, our results show that, for well-behaved target functions, e.g., Hill and Valley,
larger model lists or model lists with bigger models having more complex terms, tend
to give model averages that have bias when they do not fit well and excessive vari-
ance when the full size of the model list is used for prediction. That is, strong clear
V-formations in the second performance curves tend to be associated with models or
model lists that are complex. Our results also suggest that there will be instability
if an excessively rich dictionary is used and that otherwise there is little predictive
advantage in large dictionaries.

A caveat to this is that when the basis used to form the BMA is quite different
from the basis in which the target function is parsimoniously expressed it my be use-
ful to average over more complex models, possibly with more complicated terms.
Otherwise, as seen in the Hill with Chebyshev example AS = 1, 2 smaller models
tend to do best. In these cases, it is possible that the roughness of the first performance
curves accurately reflects the search over τ . In terms of the predictive accuracy correct
or nearly correct model lists, as determined by the optimal τ , give performance curves
of the first kind that decrease and are relatively smooth.

When target functions are not so well behaved, e.g., the MexicanHat and Tooth
examples, having, for instance, high curvature, it is easy for a mismatch of bases to
lead to either instability (too rich a class of approximands) or to the preference for
many models when the average is formed from individual terms.

Strong advocates of parsimony would conjecture that when the target function is
a finite sum of basis elements, best predictive results would be obtained when the
approximating basis is the same as the target function basis. In fact, our computations,
on balance, do not appear to support this, except for two special cases noted next.
Aside from these, the distinction f ∗ ∈ spanB versus f ∗ /∈ spanB does not seem to
affect predictive error when enough basis elements can be added so the approximation
error is smaller than the variation in the data.

The two special cases where basis matching between target and approximation
seems to be predictively helpful occur for very rich classes of models and for lists of
very small models. Indeed, with rich model classes, when f ∗ ∈ spanB some over-
completeness may be helpful. With lists of small models the bias variance tradeoff is
affected by f ∗ /∈ spanB. In particular, when f ∗ /∈ spanB small models in the wrong
basis cannot approximate it well.

As a generality, approximation methods perform better when there is a mechanism
for removing basis elements or models that prove to be of little or no use. However,
this is most important when the sample size is large because otherwise, as n increases,
the chance of including poor terms increases. For smaller sample sizes such as those
we have used here, we suggest pruning would be of little benefit predictively. In larger
sample settings, pruning would likely only be helpful past a specific sample size depen-
dent on the target function and basis used. In effect, therefore, we have addressed the
more limited goal of searching for the first model lists that were big enough for good
prediction rather than genuinely optimal. Nevertheless, we have demonstrated that
model list search and consequent uncertainty is an essential component of a compre-
hensive uncertainty analysis.
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