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Abstract: We present a technique for evaluating and comparing how clusterings reveal structure inherent in the data set.
Our technique is based on a criterion evaluating how much point-to-cluster distances may be perturbed without affecting the
membership of the points. Although similar to some existing perturbation methods, our approach distinguishes itself in five
ways. First, the strength of the perturbations is indexed by a prior distribution controlling how close to boundary regions a
point may be before it is considered unstable. Second, our approach is exact in that we integrate over all the perturbations; in
practice, this can be done efficiently for well-chosen prior distributions. Third, we provide a rigorous theoretical treatment of the
approach, showing that it is consistent for estimating the correct number of clusters. Fourth, it yields a detailed picture of the
behavior and structure of the clustering. Finally, it is computationally tractable and easy to use, requiring only a point-to-cluster
distance matrix as input. In a simulation study, we show that it outperforms several existing methods in terms of recovering the
correct number of clusters. We also illustrate the technique in three real data sets.  2013 Wiley Periodicals, Inc. Statistical Analysis
and Data Mining, 2013
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1. STABILITY IN CLUSTERING

It is well known that clusterings can be unstable in the
sense that multiple clusterings may claim to summarize a
given data set equally well and we cannot tell which ones
better reflect the intrinsic structure of the data. There are
two main sources of instability. One kind of instability
occurs when a data point can be reasonably assigned to
more than one cluster. That is, the data point is in a
boundary region and might plausibly be associated with two
different clusters. Another kind of instability occurs when
a cluster incorrectly indicates a centroid in the underlying
distribution of data. These two sources of instability may
hold for a single clustering in different regions: It is
easy to imagine part of the boundary of a cluster passing
through a region where there are data points whose cluster
membership is indeterminate and another cluster centroid
being located where there are few or no data points. The
difficulty in assigning boundaries to clusterings means an
overall evaluation of the stability of a clustering is desirable.
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There are many ways to do this; cluster stability is hardly
a new topic and many authors have developed useful tech-
niques. Sometimes these go by the name of cluster vali-
dation since they are an effort to argue that the clustering
obtained represents the real distribution. Many established
techniques are based on data perturbation. The idea is
to perturb the data set, usually by subsampling the data
or adding noise, then reclustering the perturbed data. For
examples, see refs. 1–5 among others. The primary idea
behind this sense of cluster stability is that a clustering
solution should be resistant to changes in the data that one
would expect to occur in a real-data generator. More specifi-
cally, the stability of the clustering is determined by analyz-
ing the similarity of the clustering across data perturbation
runs or between the original data and the perturbed data,
usually using a type of index designed for this purpose such
as the Hubert–Arabie adjusted rand index [6], or the vari-
ation of information index [7]. Typically, this is simply the
average of the stability indices produced by the sequence
of data perturbation runs, but other summaries are possible.

A second approach is to use the silhouette score, see
ref. 8, to choose the number K of clusters in a clustering
directly. The idea is that for each K , a clustering of size
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K has already been found by some technique, such as
K-means or hierarchical clustering. Then one defines the
point-to-cluster distance from any fixed point to any fixed
cluster as the average of the distances from that point to all
the other points in a given cluster. The silhouette score for
a point is then the difference between its point-to-cluster
distances for the cluster it was assigned to and the next
best cluster, scaled by the maximum of these two point-to-
cluster distances. Thus each point is scored by its proximity
to a boundary, with points on a boundary having a score
near zero and points near the center of a concentrated
cluster having a score near ±1. The silhouette score for
a clustering is the average of the silhouette scores for each
point. Finally, K is chosen from the clustering with the
smallest average silhouette distance. This is essentially what
is done in the R-package pamk. This technique often works
well but is limited because each point is only considered
from the standpoint of its actual cluster and its next best
cluster, not all the possible clusters.

A third way to assess the stability of clusterings is to look
at how likely it is that some dispersion measure achieved
by a clustering could be the result of spurious clusterings
on unstructured data. For instance, the gap statistic of
Tibshirani [9] uses the difference in total cluster spread,
defined in terms of the sum of all pairwise distances in
a cluster, between the actual data set and the clusterings
of several reference distributions with no true clusters.
For example, in Euclidean space with the squared error
distance metric, the spread is the total empirical variance
of all the clusters. The reference distributions are used
to adjust for the dependence on K in the measure and
to guard against spurious clusters. This follows easily if
the reference distributions are uniform and have no real
clusters. However, generating a suitable data set from a
reference distribution is not easy, as the final value can
dependent strongly on the distribution of points. While
much of this is not well understood, Tibshirani [9] proposes
using the uniform distribution within the bounding box of
the original data set using principal components.

Most recently, there is an R-package clusterCons that
does consensus clustering partially in an effort to ensure
cluster stability and validation. The technique is based on
resampling so that two data points that are in the same
cluster over more bootstrap samples are more likely to be
put in the same cluster. The technique is described in ref.
10, see also ref. 11. However, note that this is essentially
a data perturbation method for stability being used as a
way to choose a clustering in the first place, not really an
evaluation of the clustering obtained.

From the Bayesian standpoint, consensus clusterings
have been motivated by the same desire for stability
but the approach has been quite different. Roughly, the
Bayesian approach [12] is to start with several clusterings

of a data set formed using different techniques; usually
this is called an ensemble. Then, one can develop a
distribution over all possible consensus clusterings which
can be used to generate a consensus membership structure,
see ref. 12 for details. Again, this is not so much a
stability assessment technique as a way to use stability
concepts to choose a good clustering in the first place. In
general, our method could be used to evaluate the clustering
output from clusterCons or Bayesian ensemble approaches
and (hopefully) verify that the consensus clustering was
better—or at least no worse—than the original clusterings
on the full data set, at least in a stability sense.

By contrast, here, we present several evaluations of the
stability of a clustering showing the stability of each point,
of each cluster, and an overall assessment of the clustering
stability. Its simplest form is for centroid-based clustering
procedures. For this case, our stability criterion is based
on assessing how much the distances from data points
to cluster centroids can be perturbed while ensuring the
data point is still closest to its assigned cluster’s center.
These perturbations are expressed in terms of factors on
d(xi, µ̂k)’s where xi is a data point i = 1, . . . , n, d is a
metric, and µ̂k is an estimate of the kth cluster centroid,
k = 1, . . . , K . Specifically, if we have a clustering Ĉ =
ĈK = (Ĉ1, . . . , ĈK) of n data points into K nontrivial
regions, we evaluate the stability of a fixed cluster Ĉk that
has xi as a member using sets of the form

Ŝik =
{
(λ1, . . . , λK)| ∀� �= k :

× λkd(xi, µ̂k) ≤ min
� �=k

λ�d(xi, µ̂�)

}
, (1)

where the λk’s are non-negative parameters and µ̂k is the
centroid of Ĉk .

More generally, we can form analogous sets when d is
not a metric and the clustering is not centroid based. For
instance, the distance dist used in place of d in Eq. (6)
of Section 2.2 is derived from a metric but is not a metric
itself. Nevertheless, the Ŝik’s in Eq. (1) are still well defined
and can be used to assess stability. Indeed, all our method
requires that

Ŝ∗
ik =

{
(λ1, . . . , λK)| ∀� �= k :

× λkδ(xi, Ĉk) ≤ min
� �=k

λ�δ(xi, Ĉ�)

}
, (2)

be well defined, where δ merely assigns a ‘dissimilarity’
between points xi and clusters Ck . That is, our methodology
only requires the n × K inputs δ(xi, Ĉ�); these can come
from familiar dissimilarity measures such as average
linkage.
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While our experimental results and simulations (see
Section 7.1) demonstrate that our method works with
general dissimilarity measures, our formal results are only
for the case that d is a metric. An examination of the proofs
will reveal that the results will hold for some nonmetric
d’s, but it is hard to characterize them precisely. Loosely,
as long as d (or δ) is strong enough to ensure probabilities
accumulate in the clusters asymptotically correctly, versions
of Theorem 1 in Section 3.1, the properties given in Section
4.2, and Theorem 3 in Section 4.4 should hold. However,
Theorem 2 in Section 3.2 and the proposition in Section
4.3 are not likely to hold in much greater generality than
we have shown here as they makes use of the full strength
of a metric.

It is seen that for both forms, Eqs. 1 and 2, the larger the
set is, the more stable Ĉk is and the more stable the Ĉk’s
are collectively the more desirable the overall clustering
is. We measure the size of each Ŝik (or Ŝ∗

ik) by taking the
λk’s to be independently and identically distributed with
a marginal distribution function F(·) and finding FK(Ŝik),
resp. FK(Ŝ∗

ik). (We omit the superscript K indicating the
K-fold product of F ’s when no confusion will result, thus
for instance we write FK(Ŝik) = F(Ŝik) with mild abuse
of notation.)

Thus, F is seen to play the role similar to that of a
prior: F is chosen by the practitioner and used to make
inferences about stability—our only assumptions are that
F is continuous and has only non-negative support. It is
a source of information entirely disjoint from the data and
represents pre-experimental information about how much
one should be able to perturb distances between points and
centroids without too much change to the clustering. We
emphasize that F is not a prior in the sense that one can
use it to form a product with a likelihood. Nevertheless, we
refer to the clustering stability measure we study here as
‘Bayesian’ and for convenience call F a prior.

For fixed i, the values F(Ŝik) can be regarded as a soft
membership function. Obviously, for each k, F(Ŝik) ≥ 0
and for each i,

∑
k F (Ŝik) = 1. So, an xi that is stably

inside a cluster Ĉk will have a high F(Ŝik) while an xi

that is far from µ̂k will give a small F(Ŝik). So, the size
of F(Ŝik) ∈ [0, 1] is an indicator of how plausible it is to
regard xi as a member of Ĉk . Analogous reasoning applies
to Ŝ∗

ik .
To see this more precisely, suppose C(K, D) is a

clustering function that partitions a set of n data points
D = {x1, x2, . . . , xn} into a set {Ĉ1, Ĉ2, . . . , ĈK} of K

clusters. Our approach to stability is to create a new
clustering function C(K, D, λK), where λK = (λ1, . . . , λK),
by modifying C(K, D) to take a parameter λK that
represents the perturbation of some aspect of the clustering.
So, without loss of generality, suppose the clustering
function C(K, D) returns an n × K assignment matrix of

points to clusters, say

A = [aik] = C(K, D).

In the hard clustering case, aik = 1 if xi ∈ Ĉk and 0
otherwise. For soft clustering, each row of A is a
distribution over the clusters giving the partial membership
of each point in each cluster.

Now suppose that for a given value λK , the perturbed
clustering function C(K, D, λK) gives the assignment
matrix

A∗(λK
) = [

a∗
ik

(
λK

)] = C
(
K, D, λK

)
.

Conditional on λK , C(K, D, λK) is a deterministic function.
We can integrate out λK from the [a∗

ik(λ
K)]’s with

respect to F , and later take F = Fθ where θ will be a
hyperparameter. The result is an n × K matrix � = [φik]
defined by

�(K, C) = [φik] =
∫

A∗(λK
)
dFθ

(
λK

)
. (3)

We call � the averaged assignment matrix. The integration
spreads the binary membership matrix A across the clusters
based on the behavior of those points under perturbation
of the clustering function by λ. If one interprets rows of
A∗(λK) as probability distributions over the clusters, that is,
write a∗

ik(λ
K) = p(aik|λK) for fixed i, then � is analogous

to a Bayesian’s marginal for the data.
The link between Eq. (1) and Eq. (3) that makes our

approach feasible is taking A∗ to be defined by indicator
functions for the Ŝik’s. Specifically, we set

�(K, C) = [φik] =
∫

I
Ŝik

(
λK

)
dF

(
λK

)
, (4)

so that when F concentrates at λK = (1, . . . , 1), [φik] =
[aik]. We do not study the perturbed clusterings C(K, D, λK)

for individual values of λK , we study the average
properties of the collection of perturbed clusterings
{C(K, D, λK)| λK ∈ R+,K} after integrating out λK as in
Eq. (4). Note that, phrased this way, Eq. (4) is similar to
the silhouette distance approach in ref. 8. The difference
is that Eq. (4) involves the use of a prior F and, rather
than using a ratio involving averaged distances for each
point, Eq. (4) looks at a soft-clustering via the averaged
assignment matrix. A more general form for Eq. (4) can be
defined using S∗

ik in place of Sik . Here, however, we focus
on Eq. (4) because it is theoretically tractable; below we
only use the S∗

ik version in two computed examples (see
Sections 2.2 and 7.1).

As Eqs. 3 and 4 are matrices they provide a compre-
hensive assessment of how well each data point fits each
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cluster. However, in practice we want to compare clus-
terings. So, for each point we use the entry in � corre-
sponding to its assigned cluster, then average these values
over data points, that is, over i = 1, . . . , n. We call the
resulting scalar value the average pointwise stability APW.
High values of the APW correspond to intuitively reason-
able notions of stability and indicate desirable clusterings.
That is, high APW can be used as a criterion to select
among clusterings. In fact, our theoretical analysis below
focuses on a special empirical case of the APW and its
population form, see Eqs. 12 and 13. In Section 5, we
explain the close relationship between these analytically
tractable forms, the APW and the function of APW (cal-
ibrated against a baseline null distribution) that we use in
practice.

We will see that an approach based on Eqs. 3 and
4 to evaluate the stability of a clustering has several
advantages. First, if the stability of a clustering Ĉ found
using D is evaluated, it converges, asymptotically in n,
to the population form of the stability of the clustering.
Second, if one uses it to select a number of clusters, that is,
uses our criterion to search for a high-stability clustering
among a collection of candidate clusterings, one can prove
that our stability criterion is consistent for the correct
number of clusters, provided the corresponding modes
in the data distribution are sufficiently distinguishable.
Third, our criterion responds to how much mass a data
set tends to put on boundary regions between clusters,
giving smaller stability values as boundary regions become
more populated. Fourth, in several generic cases when the
stability of a clustering seems high, �(K, C) approaches
its maximal value of 1. This means we can use large
values of our criterion as a way to choose clusterings
and be secure that we have, in fact, found clusterings that
match our intuitive idea of stability. Fifth, we establish a
theorem showing that reasonable optimal clusterings under
our criterion are not less stable, and often more stable, than
other clusterings. This last result only holds in the limit
of the population distribution concentrating on the cluster
centroids, a condition which is very hard to relax in the
general case.

From a performance standpoint, we compare our method
to three conceptually different approaches to cluster stabil-
ity, namely subsampling, silhouette distance, and the gap
statistic. In a series of examples in Section 7, we find that
with only a couple of explainable exceptions our method
is better able to identify the correct number of clusters.
Moreover, graphs of the clusterings chosen by our method
on several examples appear reasonable and informative.

In addition, we use our method to do a stability analysis
of two data sets. Our analysis leads us to suggest that in one
data set there are more clusters than the apparent classes
while in the other data set we find that fewer clusters than

the apparent classes is reasonable. We comment that these
two data sets were examined from a similar standpoint
in ref. 13, who proposed two ways to evaluate how
consistent a clustering was with subject-matter knowledge.
At root, these evaluations are physically driven and provide
scientific validation rather than stability. By contrast our
method does not require any subject-matter information; it
is a way to use stability concepts to derive information that
may be germane to a subject-matter problem and amenable
to downstream validation.

In the rest of this paper, we make the case that our
method for evaluating cluster stability is an improvement
over many existing methods. In Section 2, before explaining
the details of our approach, we show how our method can
be used to visualize the stability of clusters, a property that
other methods do not in general have. That is, we generate
what we call pointwise stability graphs indicating regions
of high or low stability; these depend on the choice of
F . We also visualize � via ‘stability heatmaps’ to indicate
clusters with low or high stability. In Section 3, we formally
state our stability criterion based on Eqs. 3 and 4 and
give our first collection of theoretical results demonstrating
that this criterion has an asymptotic limit (as n → ∞). We
also verify that our criterion gives consistent estimation for
an optimal number of clusters. In Section 4, we continue
this work but focus on theoretical arguments ensuring the
optima from our criterion are intuitively reasonable. In
Section 5, we discuss the general implementation of our
method for choosing the number of clusters. In Section
6, we take up prior selection and in particular show how
to estimate the hyperparameter for the shifted exponential
prior family. In Section 7, we examine the performance of
our method computationally. We use three sorts of synthetic
data to verify that our method outperforms three existing
methods and then present two stability analyses of real data
sets. Finally, in Section 8, we briefly discuss the advantages,
disadvantages, and applicability of the methods that we
have studied.

2. GEOMETRIC MOTIVATION

In this section, we present a geometric motivation and
interpretation for the averaged assignment matrix � defined
in Eqs. 3 and 4. Specifically, we show two ways � can
be used to visualize the stability of a clustering. The first
of these is an averaged pointwise stability measure that
we call a pointwise stability graph. It is only useful in
two dimensions but helps reveal what the φik’s mean. The
second is a heatmap of certain elements of the averaged
assignment matrix showing the interactions between the
clusters in the sense of where points go under perturbation.
This plot shows the interaction under perturbation between
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Fig. 1 The pointwise stability PW(x) for x ranging over [−1.5, 1.5] × [−2, 2], relative to fixed centroids indicated by red ×’s. Here,
the prior controlling the scale of the perturbation values, the λk’s, is a shifted exponential with location parameter 1 and scale parameter
θ = 0.1, 0.75, 2, 10 from upper left to lower right. White represents a pointwise stability of essentially 1 and black a pointwise stability
of essentially 0 with intermediate colors representing intermediate pointwise stabilities. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

a fixed cluster and the other clusters; its usefulness is not
dimensionally limited.

2.1. Properties of Pointwise Stability

Suppose, for data point xi , hi gives the index of the
cluster to which it belongs, that is, ai,hi

= 1. Then, the
stability of xi can be assessed by the (i, hi) entry in the
averaged assignment matrix:

PW(xi) = PWi = φi,hi
.

Because we average over perturbations, that is, integrate
out λK , PWi is minimal when xi is near the boundary of
a cluster where perturbations in the distances are likely to
send xi closer to another cluster center. Likewise, PW(xi)

is maximal near cluster centers, where the perturbations, the
λk’s, have to be much larger to make the xi change cluster
membership. For general x, PW(x) can be evaluated from
the set of K distances between x and each of the cluster
centers; i.e., the d(x, µ̂k)’s for k = 1, . . . , K . That is,

PW(x) = F
({

λK : λkd(x, µ̂k) ≤ λ�d(x, µ̂�)∀� �= k
})

. (5)

To illustrate how the pointwise stability behaves, consider
the case of a centroid-based clustering in which a point is
assigned to its nearest centroid. In two dimensions, a fixed
collection of centroids taken as cluster centers partitions the
space into a Voroni diagram by associating each point with
its closest centroid. Now, PW(x) induces a type of ‘soft’
partitioning by associating each point x with a stability
value that is low when x is near the boundary regions of
the clusters and high near the cluster centers. How close a
point must be to the boundary region before it is ‘unstable’
is controlled by the size of the perturbation factors λK ; this
in turn is controlled by the prior distribution F(λK).

An example of this is shown in Fig. 1 where we have
fixed five values µ̂k , evaluated the pointwise stability
PW(x) at each location in the rectangle, and assigned
colors to values of PW(x). We call the result a pointwise
stability graph for the clustering. The prior F(λK) for each
of the panels is a shifted exponential, that is, f (λ|θ) =
θe−θ(λ−1)1λ≥1, with θ = 0.1, 0.75, 2, 10, respectively. Each
panel in Fig. 1 shows five light colored regions surrounding
the five cluster centers where PW(·) is high. As x moves
away from the cluster centers, the stability index in Eq. 5
decreases giving ever darker regions indicating instability.
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Fig. 2 Panel (a): A pointwise stability graph for the same data as used in Figure 1 but now the data points are also plotted along with
the five cluster centers. Points on the boundary regions decrease the overall stability, while points near the cluster centers increase the
overall stability. Panel (b): The heatmap for the data in Panel (a) showing how the points behave under perturbation. Note the decrease
in stability from top to bottom in blocks on the main diagonal and the increase in stability from top to bottom in blocks off the main
diagonal. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

These separate the clusters. On the other hand, as θ

increases, the prior concentrates around 1 so more mass
is on values of λ that are close to 1. Thus the dark regions
between the clusters shrink, indicating that perturbations
of points into those regions are more and more unlikely.
For small values of θ , the perturbations are much larger so
perturbations of points by the factors λk to regions outside
their cluster is easier. This is indicated by the darker regions
that become more extensive relative to the regions of cluster
stability as θ gets smaller.

2.2. A Heatmap Plot of Clustering Behavior

For a visualization of stability that goes beyond two
dimensions we propose a sorted heatmap plot of the
averaged assignment matrix. Simply take the φik from Eq.
(4) and recall that i indexes the data points while k indexes
the clusters. Therefore, in the matrix �(K, C), we can
sort over cluster first so that the first collection of rows
corresponds to the data points in cluster 1, the second
collection of rows corresponds to the data points in cluster
2, and so on up to K . Then, within each collection of rows
representing a cluster, say k0, sort the rows by putting the
stabilities φi,k0 in decreasing order from top to bottom as
i ranges over the data points in cluster k0 (and k0 ranges
from 1 to K). Then, assign colors to ranges of values of the
entries of the resulting matrix, higher values corresponding
to lighter colors. We call the result a stability heatmap for
a clustering.

An example of a stability heatmap can be derived from
panel (a) of Fig. 2 and is shown in panel (b). Panel (a)
indicates a level of pointwise stability between the top two
panels of Fig. 1 because it used a data-driven value of θ

(found using the technique of Section 6). Converting panel
(a) to a heatmap is straightforward: The horizontal axis

represents an ordering of the clusters from 1–5. Within the
upper left block the φi,1’s for xi in cluster 1 are indicated
by the gradual darkening from top to bottom. The block
immediately below it represents the φi,1’s for xi in cluster
2 and the block immediately to its right represents the φi,2’s
for xi in cluster 1. It is seen that the blocks on the main
diagonal are quite light indicating that the clusters are quite
stable even though within each block the color darkens a
bit from the top to the bottom.

One can also look along the rows of the heatmap to see
how much ‘instability’ there is between the clusters that
the blocks on a row represent. Lighter colors in the blocks
on the main diagonal (or equivalently darker colors in the
blocks off the main diagonal) mean less instability in the
sense that it takes larger perturbation factors to move a point
from one cluster to another. For instance, in the fourth row
of blocks it is seen that the second block has some light
lines at the bottom suggesting an interaction, if mild, with
the fourth and fifth blocks in that row.

In these heatmaps, comparisons must be done keeping in
mind that only the rows sum to one; comparisons within
columns do not in general. However, it is tempting to apply
the same interpretation vertically to generate suggestions
as to which clusters are unstable—provided a separate
stability analysis were done to ensure the appearance of
interchangability of points in the two clusters was not just
an artifact of the method of construction of the heatmap.

EXAMPLE 1: MNIST Data Analysis. As an illustration
of what the stability heatmap looks like in practice, consider
the popular MNIST data set containing 1934 handwritten
digits in 0 through 9, each given as a 32×32 pixel binary
image, see ref. 14. This is a classification data set in which
each binary image corresponds to a single digit label. So, we
know unambiguously what the 10 clusters must represent

Statistical Analysis and Data Mining DOI:10.1002/sam
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Fig. 3 Heatmap formed from the points in the MNIST data set
treated as a clustering problem. Lighter blocks on the diagonal
are more stable than darker blocks, while lighter blocks off the
diagonal indicate mutual instability. The blocks on the main
diagonal are generally brighter than any of the other blocks
indicating that the images for each digit tend to be more similar
to other digits in their class than to other those in other classes.
However, many off-diagonal blocks are also bright, indicating
many overlapping classes. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

and which images belong to each ‘cluster’. If we treat this
as a clustering in which cluster membership is given by
class labels, we can evaluate its stability—in essence, we
are asking which the classes are stable and which classes
are easily confused.

To evaluate the φik’s, we first specify a distance and
prior. As the images are given as binary matrices x = (xuv)

and y = (yuv) where u, v = 1, . . . , 32, there is no obvious
metric to use to form φik . However, consider

dist(x, y) = min
α,ν∈{0,1,...,31}

∑
u,v∈{1,...,32}

|xu+α,v+ν − yuv|, (6)

where we assume that xu′v′ = 0 if u′ > 32 or v′ > 32.
Effectively dist takes the minimum L1 norm (or, since the
pixels are binary, Hamming distance) over all horizontal
and vertical shifts. Clearly, dist is not a metric—a distance
of zero does not imply equality—but it does ensure that x

is properly aligned with y. We take the distance between a
point xi and a cluster—δ(xi, Ck) in 2—to be the average
of all distances, in the sense of Eq. (6), from xi to the points
in the cluster under consideration. This means the set Ŝ∗

ik

can be defined. If we again assign a shifted exponential
prior to the ten λk’s, and choose θ as in Section 6, we can
find the φik’s.

Figure 3 shows the heatmap for the MNIST data set. Each
column, numbered zero through nine, corresponds to a digit
and the blocks on the main diagonal indicate the probability
that a data point remains in its cluster under perturbation.
It is seen that 0, 6, and and 7 are relatively stable digits
while 8 and 9 are the least stable. Brighter colored blocks
off the main diagonal show which instances of a digit are
located on a boundary with at least one of the other digits.
For example, many 0’s are near the boundary of 6 but few
0’s are near the boundaries of 1, 4, and 7. Similarly, 3 is
often near the boundary of 2, 5, and 9. Another metric may
yield better results, this example shows how the heatmap
reveals the stability of a clustering.

3. THEORY FOR THE AVERAGED ASSIGNMENT
MATRIX

To be more formal, suppose we have n independent and
identical (IID) random d-dimensional variables X1, . . . , Xn

with outcomes x1, . . . , xn denoted D. Write P to mean the
probability of any of the Xi’s. A clustering is a partition
of collection of D into K sets Ĉ = ĈK = {Ĉ1, . . . , ĈK}.
Regarding a clustering as a partition of the data can be
equivalent to partitioning Rd . For instance, if we write µ̂k

to be the centroid of cluster Ĉk for k = 1, . . . , K and use a
centroid-based clustering technique we can define, for any
x ∈ Rd ,

x ∈ Ĉk ⇔ ∀� �= k d(x, µ̂k) ≤ d(x, µ̂�), (7)

where d is a metric on Rd . One standard centroid is the
empirical conditional mean used in K-means clustering and
defined by

µ̂k = 1

|Ck|
∑
i∈Ĉk

xi . (8)

Now ĈK can be regarded as a partition of the data or as
a partition of Rd defined by the data and the context will
make clear which is meant.

Note that the ‘hat’ on the C and Ck’s indicates that
the clustering is chosen using the data. If we regard
the clustering as a set of regions in Rd then we can
write the ‘limits’ of the Ĉk’s as n increases as Ck’s. So,
CK = {C1, . . . , CK} is a population quantity, a disjoint and
exhaustive partition of Rd into convex sets, reflecting the
limiting behavior of ĈK with large n. Now, we can set
µk = E(XICk

(X))/P (Ck) = E(X|Ck) where IA(U) is the
indicator function for a random variable U to be in a set
A. Thus, we also require that, parallel to Eq. (7),

x ∈ Ck ⇔ ∀� �= k d(x, µk) ≤ d(x, µ�). (9)
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In this case, we want to ensure that Ĉk → Ck for each k.
One natural criterion is

P(Ĉk�Ck) → 0, as n → ∞, (10)

where Ĉk�Ck is regarded as a set in Rd , P indicates the
probability on Rd , and the mode of convergence is in the
distribution P n of X1, . . . , Xn used to form the estimate Ĉk

of Ck . If Eq. (10) holds, then µ̂k → µk in P . However, the
converse fails in general. That is, if µ̂k → µk in P for all
k for a centroid based clustering satisfying Eq. 7, then Eq.
(10) does not necessarily hold for all k. We will get around
this by assuming Eq. (9), that is, that the limiting clustering
is centroid based as well.

Now we can define a Bayesian notion of cluster stability.
It has two forms, one for empirical clusterings and one
for population clusterings. We start with the empirical
form. Given K , let �1, . . . , �K be K IID non-negative
real valued random variables with continuous marginal
distribution F and outcomes denoted λ1, . . . , λK . Now, for
fixed i, k, Ĉ, and D, recall the set

Ŝik = {
λK : ∀� �= k λjd(xi, µ̂k) ≤ λ�d(xi, µ̂�)

}
, (11)

where λK = (λ1, . . . , λK). When xi is close to µ̂k , the set
of λk and λ�’s for � �= k for which I

Ŝik
(λK) is one is large.

Likewise, if the µ̂�’s for � �= k are far from µ̂k , the set
of λk and the λ�’s for � �= k for which I

Ŝik
(λK) is one is

large. That is, in the distribution F , when (i) xi is near
the centroid µ̂k of Ĉk or (ii) the µ̂�’s are far from µ̂k we
have P(I

Ŝik
(�K) = 1) is large and it is seen that (i) and

(ii) mean cluster k is stable. (Note that we use P = P� for
the probability associated with the �k’s as well as the Xi’s,
dropping the � when the context makes it clear which is
meant.)

However, when xi ∈ Ĉk is not close to µ̂k , for example,
is close to the boundary of Ĉk , or the centroids of the
Ĉ�’s (for � �= k) are not far from µ̂k then P(I

Ŝik
(λK) = 1)

is small. In fact, if F is strictly increasing on [0,∞),
P(I

Ŝik
(λK) = 1) is (strictly) increasing as a function of

d(xi, µ̂k) and decreasing in the d(xi, µ̂�)’s (though not
strictly because there are usually many values of �). That
is, when Ĉk is not stable in the sense of xi only weakly
representing it or there are other cluster centers close
enough to compete effectively with Ĉk to represent xi ,
P(I

Ŝik
(λK) = 1) tends to be small. Thus, P(I

Ŝik
(λK) = 1)

is an assessment of how concentrated and separated the
clusters are, that is, how stable Ĉk is as a summary of xi .
The exact trade-off between concentration and separation
for ĈK depends on the specific choice of metric d and prior
F .

We can combine these assessments over i and k to get
an overall stability for the clustering. The empirical form

of our Bayesian clustering stability criterion is, for fixed K ,
D, and ĈK , the average over instances of Ŝik given by

Qn(K) =
K∑

k=1

1

n

n∑
i=1

I{xi∈Ĉk}

×
∫

I{∀� �=k:λkd(xi ,µ̂k)≤λ�d(xi ,µ̂�)}dF(λK). (12)

For fixed K and C the population form of Eq. (12) replaces
Ŝik with its population form Sik using the µk’s in place of
the µ̂k’s and takes an expectation. The result is

Q∞(K) =
K∑

k=1

E I{X∈Ck}

×
∫

I{∀� �=k:λkd(X,µk)≤λ�d(X,µ�)}dF(λK). (13)

For ease of notation, let

φ̂k(x) = I{x∈Ĉk}

∫
I{∀� �=k:λkd(x,µ̂k)≤λ�d(x,µ̂�)}dF(λK)

and let

φk(X) = E I{X∈Ck}
∫

I{∀� �=k:λkd(X,µk)≤λ�d(X,µ�)}dF(λK).

These are versions of φik where the argument corresponding
to i is replaced by x or X. Now Eqs. 12 and 13 become

Qn(K) =
K∑

k=1

(
1

n

n∑
i=1

φ̂k(xi)

)
and Q∞(K) =

K∑
k=1

φk(X).

(14)

3.1. Convergence of Qn to Q∞
In view of Eq. (14), we can show Qn(K) converges

to Q∞(K) largely because it is an instance of the law of
large numbers. Moreover, although we have assumed Eq.
10, in fact Eq. (10) can be derived from the convergence
properties of the cluster means µ̂k under Eqs. 7 and 9.
These converence properties are built into the proof of the
theorem below to make the result simpler to state.

THEOREM 1: Fix K and assume Eqs. 7 and 9. Then,
if, ∀� = 1, . . . , K , µ̂� → µ�, we have that

1

n

n∑
i=1

φ̂k(Xi) → φk(X), (15)

and hence Qn(K) → Q∞(K), as n → ∞ in probability
P n, the distribution of X1, . . . , Xn.

Statistical Analysis and Data Mining DOI:10.1002/sam



Koepke and Clarke: A Bayesian Criterion for Cluster Stability 9

Remark: It is easy to determine if Eq. (7) is satisfied
because it is a property of the clustering procedure.
However, Eq. (9) amounts to an assumption of the true
clustering which is hard to verify and may not hold if
the level sets of P around its modes are nonconvex. The
hypotheses that the µ̂�’s converge to their respective µ�’s
is also hard to verify, but can usually be safely assumed
since it rests primarily on a law of large numbers applied
to Eq. (8).

Proof: The proof follows from deriving bounds on
|Qn(K) − Q∞(K)| so that the law of large numbers can
be invoked. The details are given in Appendix A. �

3.2. Choosing K Consistently

Having established that the empirical form of the stability
assessment converges to the population form, we proceed to
demonstrate that stability can be used to choose the number
of clusters consistently. This is based on the idea that a
more stable clustering is to be preferred over a less stable
clustering and hence high values of the stability criterion
are desired.

By changing our perspective, we can regard Qn(K) as
a data dependent objective function for choosing K . Let
K1 be a relatively small positive integer and let K2 > K1

be a relatively large but finite integer. Let [K1,K2] be
the (compact) set of integers strictly between K1 − 1 and
K2 + 1 and write

K̂ = argmax
K∈[K1,K2]

Qn(K). (16)

Theorem 1 established that, pointwise in K , Qn(K) →
Q∞(K). Thus, for any bounded interval [K1,K2] and
ε > 0, we have that

P
(

sup
K∈[K1,K2]

|Qn(K) − Q∞(K)| > ε
)

→ 0.

That is, Qn(K) → Q∞(K) uniformly in probability on
[K1,K2]. Let

Kopt = argmax
K∈[K1,K2]

Q∞(K).

We have the following.

THEOREM 2: Suppose that Kopt ∈ [K1,K2] is the
unique maximum of Q∞(K) over K . Then,

argmax
K∈[K1,K2]

Qn(K) → argmax
K∈[K1,K2]

Q∞(K), (17)

that is K̂ → Kopt, in P as n → ∞.

Proof. Convergence Eq. (17) follows from a simple modi-
fication of Theorem 2.1 in ref. 15, see p. 2121. Specifically,
Theorem 2.1 requires that the limiting objective function,
here Q∞(K), be continuous as a function of the parame-
ter, here K . In fact, the continuity is only used at one step
in the proof (p. 2122) to ensure a separation between val-
ues Q∞(Kopt) and Q∞(K) for K �= Kopt. This separation
holds trivially for discrete parameters such as K . So, when
Q∞(·) has a unique maximum in [K1,K2] the step can be
accomplished. So, the modified form of Theorem 2.1 can
be used here to give Eq. (17).

4. THE STABILITY CRITERION

In this section we verify that it is reasonable to interpret
Q∞, and hence Qn, as an assessment of stability in the
sense that it is strongly influenced by how much mass the
true distribution assigns on the boundary regions between
clusters in a clustering. Indeed, we formalize the intuition
that as a data point xi moves closer to its assigned cluster
center, stability increases; as xi moves further from its
cluster center, stability decreases. As a separate point, we
argue that K’s giving large values of Q∞(·) or its empirical
version Qn(·), that is, Kopt and K̂ , often correspond to an
intuitively correct number of clusters.

4.1. Intuition behind Q∞
As a simple motivating example, consider the case of

two clusters in two dimensions. For simplicity, assume that
these clusters have centroids at (−1, 0) and (1, 0), as shown
in Fig. 4a. Thus the clusters here may be defined by the
regions C1 = {(x, y) : x ≤ 0} and C2 = {(x, y) : x > 0}.

Now, in the K = 2 case, the stability criteria of Eq. (13)
can be written as

Q∞(2) = EXP(D1/D2 ≤ �2/�1)IC1(X)

+ EXP(D2/D1 ≤ �1/�2)IC2(X) (18)

= PX(C1)EX(G12(D1/D2)|C1)

+ PX(C2)EX(G21(D2/D1)|C2), (19)

where �1,�2 ∼ F are drawn from the perturbation prior
F and

G12(t) = P(�1/�2 ≥ t)

G21(t) = P(�2/�1 ≥ t) (20)

are the survivor functions of the random variables �1/�2

and �2/�1, respectively. Here, D1 = d(X,µ1) and D2 =
Statistical Analysis and Data Mining DOI:10.1002/sam



10 Statistical Analysis and Data Mining, Vol. (In press)

(a) Contours of distance ratios, K = 2. (b) Unstable case with K = 3. (c) Unstable case with K = 2.

(d) Least stable case, K = 2. (e) Least stable case, K = 3.

Fig. 4 (a) An illustration of our stability in 2d. Two centroids are placed at (−1, 0) and (1, 0), and contour lines show the level sets
of D1/D2 for x ≤ 0 and D2/D1 for x > 0. The stability decreases along the contours. (b) K = 3 is proposed, but K = 2 is correct. (c)
K = 2 is proposed, but K = 3 is correct. (d) A case where Q∞(2) achieve its minimum; as w → 0, µ1 is constant, but all mass becomes
concentrated on boundary regions. (e) A case where Q∞(3) achieves its minimum; mass becomes concentrated at a point equidistant to
each of the three centroids. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

d(X,µ2) are regarded as random variables often truncated
to C1 and C2, respectively.

Note that these survivor functions G12 and G21 are mono-
tonically non-increasing, with G·(0) = 1, as �1,�2 ≥ 0,
and G·(1) = 1/2, as P(�1 ≥ �2) = 1/2. Relating this to
Eq. (19), G12 and G21 are monotonically non-increasing
with increasing values of the distance ratio. Thus, as mass
in the distribution of X is moved away from the centroids,
the value of Q∞(2) decreases to 1/2; as the distribution
of X becomes more concentrated around the two centroids,
Q∞(2) increases to 1. Note that while the perturbation prior
F determines the rate of increase or decrease, monotonicity
is guaranteed for any F that is positive a.e. on [0,∞).

A two-dimensional illustration of this is shown in
Fig. 4a. We here plot the contours of the ratio of distances
to the two centroids, located at (−1, 0) and (1, 0) assuming
the covariances of the two components in P are identical
and have their eigenvalues along the x and y axes. It is
seen that, for any F , the contribution of a data point to
the stability assessment of the clustering is a function of its
location in the contour plot. Contours near the boundary at
x = 0 are less stable than those close to the centroids.

As a generality, the intuition of our stability measure
closely follows that of Fischer’s Linear Discriminant,
defined as the ratio of within-class variance to between-
class variance. In particular, when the mass of X is
concentrated around the two centroids, Fischer’s linear
discriminant has its best error rates and and the Q∞(K)’s
achieve their most stable values. Likewise, when the

masss of X is spread widely around the two centroids,
Fisher’s linear discriminant gives poor classification and the
Q∞(K)’s achieve their least stable values, that is, D1/D2

and D2/D1 are likely to be on contours far from their
respective centroids.

Now, to motivate the intuition of how our method can
be used to choose the correct number of clusters, we wish
to consider simple examples: K = 2 is correct, but the
candidate clustering contains three clusters, and K = 3 is
correct but the candidate clustering contains two clusters.
The first case is shown in Fig. 4b. Here, we would expect
Q∞(3) < Q∞(2), as one of the modes is split in the K = 3
case (shown), and mass near the boundary in the split mode
decreases the overall stability. The second case is shown in
Fig. 4c. Here, we would expect Q∞(3) > Q∞(2), as little
of the mass in the second cluster in the K = 2 case (shown)
is near the most stable region of the cluster. In both of these
cases, were the correct clusterings shown, most of the mass
would be concentrated in regions of high stability. It is easy
to see that the stability of a well chosen clustering will be
higher than the stability of a poorly chosen clustering, an
intuition which we explore depth in the subsequent sections.

Finally, consider a case in which Q∞(2) achieves 1/2,
its lower bound. In Fig. 4d, we show a single mode
concentrated along the border of C1 and C2 and two modes
with mass w at 2µ1/(1 − w) and 2µ2/(1 − w). As w → 0,
all the mass concentrates in regions where D1  D2 and
thus EXG12(D1/D2)  EXG21(D2/D1)  1/2. Here, one
could argue that one or three clusters is correct (depending
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on the mass at a1 and a2), and it is clear that Q∞(K)

would be higher in both cases. Similarly, for K = 3, the
lower bound of Q∞(3), 1/3, is achieved by analogously
concentrating most of the mass at a point equidistant to
each of the three centroids Fig. 4e.

4.2. Properties of Q∞(·) for General K

The foregoing intuition extends to higher dimensions
and to general K . To see this, consider the clustering C =
{C1, . . . , CK}. Write µk = E(X|Ck) and Dk = d(X,µk)

for k = 1, . . . , K and let Rij = �j/�i for i, j = 1, . . . , K .
Now, analogously to Eq. (20), consider the leave-out-one
survivor functions defined for k = 1 and k = 2 as

G1̂,1(t2, . . . , tK) = G12,...,1K(t2, . . . , tK)

= P(R12 ≥ t2, . . . , R1K ≥ tK),

G2̂,2(t1, t3, . . . , tK) = G21,23,...,2K(t1, t3, . . . , tK)

= P(R21 ≥ t1, R23 ≥ t3, . . . , R2K ≥ tK),

where 1̂, 1, for instance, means that the first cluster is
left out; 2̂, 2 is similar and we use the hat-notation for
omission without further comment. In general, the leave-
out-k survivor function is

Gk̂,k(t1, . . . , t̂k, . . . , tK) = Gk1,...,k̂k,...,KK(t1, . . . , t̂k, . . . tK)

= P(Rk1 ≥ t1, . . . , R̂kk ≥ tk, . . . , RKK ≥ tK).

Now, parallel to Eq. (18) we have

Q∞(K) = EXP�(D1/D2 ≤ �2/�1, . . . , D1/DK

≤ �K/�1)IC1 + EXP�(D2/D1

≤ �1/�2,D2/D3 ≤ �3/�2, . . . , D2/DK

≤ �K/�2)IC2 + · · · + EXP�(DK/D1

≤ �1/�K, . . . ,DK/DK−1 ≤ �K−1/�K)ICK

= P(C1)E(G1̂,1(D1/D2, . . . , D1/DK)|C1)

+ P(C2)E(G2̂,2(D2/D1,D2/D3, . . . ,

× D2/DK)|C2)

+ · · · + P(CK)E(G
K̂,K

(DK/D1, . . . ,

× DK/DK−1)|CK). (21)

Also, it is easy to see that for each k, Gk̂,k(0K−1) = 1 where
0K−1 is a vector of 0’s of length K − 1.

We can also see that Gk̂,k(1K−1) = 1/K . By the
definition of the R1k’s,

G1̂,1(1K−1) = P(�2/�1 ≥ 1, . . . , �K/�1 ≥ 1)

= P(�2 ≥ �1, . . . , �K ≥ �1)

= P(�1 ≤ min(�2, . . . , �K)).

However, assuming continuous �·’s,

K∑
k=1

P(�k ≤ min(�1, . . . , �̂k, . . . , �K) = 1.

So, by symmetry, all terms in the sum are equal. That is,
P(�k ≤ min(�1, . . . , �̂k, . . . , �K) = 1/K . The Gk̂,k’s for
k �= 1 are similar.

Now, it is easy to see that on Ck , 0 ≤ Dk/D� ≤ 1
for � �= k. In addition, as (s1, . . . , sK−1) ∈ RK−1 increases
from 0K−1 to 1K−1 along a curve in the K − 1 unit
cube we see that each Gk̂,k(s1, . . . , sK−1) decreases from
1 to 1/K . (Here, increasing means that (s1, . . . , sK−1) ≤
(s ′

1, . . . , s
′
K−1) ⇐⇒ ∀k sk ≤ s ′

k .) Thus, we can generalize
the bounds on Q∞(·) to

1/K ≤ Q∞(K) ≤ 1.

As in the K = 2 case, these bounds are achievable. Indeed,
if we consider a sequence of distributions P that concentrate
at K centroids we get Dk/D� → 0 on Ck for � �= k.
Therefore, Eq. (21) gives

Q∞(K) → P(C1)G1̂,1(0K−1) + · · · + P(CK)G
K̂,K

(0K−1)

=
K∑

k=1

P(Ck) = 1,

corresponding to the highly stable case of the mass of P

concentrating at the centroids µk .
In addition, Fig. 4e shows the generic form of a sequence

of P ’s for which the lower bound is achievable. There are
three sectors but the argument is analogous for four or more
sectors. The density of P concentrates on a shrinking disc
at the center and each sector has a point, labeled a1, a2, and
a3 with mass near it so that EP (X|Ck) = µk is constant as
P varies. As P concentrates at the center, and the points ai

move to infinity in the direction of the arrows, the mass near
the ak’s decreases so that Dk/D� → 1 on Ck , for k �= �.
Now, Eq. (21) gives

Q∞(K) → P(C1)G1̂,1(1K−1) + · · · + P(CK)G
K̂,K

(1K−1)

= (1/K)

K∑
k=1

P(Ck) = 1/K,
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the lowest stability value. Parallel to the K = 2 case,
depending on the mass at a1, a2, a3, one can argue that
a single central cluster or four clusters are reasonable
depending on how much mass there is at the three
points.

Thus, even though the range for general K is [1/K, 1],
the high values still correspond to stability with little mass
near the boundary regions while the low values correspond
to instability in the sense that most of the mass is on the
boundary regions. Indeed, whenever Dk/D� → 0 on Ck for
k �= �, Q∞(K) → 1; see Proposition 1 below for the two
natural cases in which this happens.

Finally for this subsection, we comment on the role
of the distribution F(·) of the �k’s. The more F

concentrates as a point, the easier it is for an inequality
like �1D1 ≤ min� �=1 ��D� to be satisfied when D1 <

min� �=1 D�. Likewise, the more the mass of the �k’s is
spread out, the harder it is for �1D1 ≤ min� �=1 ��D� to be
satisfied when D1 < min� �=1 D� (see Fig. 1).

4.3. Verification That Two Stable Settings Have High
Stability

Our overall strategy will be to choose K , and more
generally clusterings, so that Qn(K) and thus Q∞(K) will
be large. We have informally observed that large values
of Qn(K) and Q∞(K) correspond to clusters that are
concentrated around their centroids or cluster centers that
are separated (provided that the degree of concentration
does not decrease too quickly as the centroids separate). To
strengthen this intuition, we present the following.

PROPOSITION 1: Suppose P has K distinct centroids
µk for k = 1, . . . , K , with ∀k : P(Ck) > 0. Then, (i) if P

concentrates at the µk’s, that is, d(X,µk)ICk
→ 0 in P -

probability we have that

Q∞(K) → 1;

and (ii) if a sequence of P ’s satisfies mink �=� d(µk, µ�) →
∞ and the d(X,µk)ICk

’s are bounded above in proba-
bility, that is, d(X,µk)IXk

= OP (1), then again we get
Q∞(K) → 1.

Remark: In the special case that d is Euclidean
distance, the hypothesis of (i) means that the conditional
variance of X, given Ck , goes to zero, if it exists,
by a uniform integrability argument. Also, by Markov’s
inequality, (ii) implies that Q∞(K) goes to one if all the
conditional variances given Ck are bounded above and the
µk’s separate. Essentially, this ensures there will be a region
separating the centroids from each other on which there is
vanishingly small probability.

Proof: To prove (i), suppose that the µk’s are fixed and
distinct, and let ε > 0. Then, P(d(X,µk) ≥ ε|Ck) → 0 and
for � �= k, P(d(X,µ�) ≥ ε|Ck) → 1. It is seen that the
integrand of φk(X) is uniformly integrable for any sequence
of P ’s because it is bounded by one. So, as P concentrates,
the definition of φk(X) gives that

φk(X) → EIX∈Ck

∫
I{∀� �=k:0≤λ�d(X,µ�)}dF(λK) → EIX∈Ck

×
∫

I{∀� �=k:0≤ε}dF(λK) = P(Ck), (22)

and therefore Q∞(K) → ∑K
k=1 P(Ck) = 1.

To prove (ii), note that for � �= k, if X ∈ Ck that

d(X,µ�) → ∞, (23)

and that there is a B so that

P(d(X,µk) ≤ B) ≥ 1 − η

for any preassigned η > 0, as P varies. Now write,

φk(X) = EI{x∈Ck}Id(X,µk)≤B

×
∫

I{∀� �=k:λkd(xi ,µk)≤λ�d(x,µ�)}dF(λK)

+ EI{x∈Ck}Id(X,µk)>B

×
∫

I{∀� �=k:λkd(xi ,µk)≤λ�d(x,µ�)}dF(λK). (24)

By the bounded convergence theorem, the second term goes
to zero because the integral and first indicator function are
both bounded by one and Id(X,µk)>B → 0 in probability as
η → ∞. The first term is bounded below by

EI{x∈Ck}Id(X,µk)≤B

∫
I{∀� �=k:λkB≤λ�d(x,µ�)}dF

× (λ1, . . . , λ̂k, . . . , λK)dF(λk), (25)

where λ̂k means λk is omitted from the integration. For
fixed λk , Eq. (23) implies that

Id(X,µk)≤B

∫
I{∀� �=k:λkB≤λ�d(x,µ�)}dF

× (λ1, . . . , λ̂k, . . . , λK) → 1 (26)

in probability. (To see this, consider the set {min(λ1, . . . , λ̂k ,
. . . , λK) > η}, note the right hand side of Eq. (26) is bigger
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than ε > 0 for n large enough, and then let η → 0.) Using
Eq. (26) in Eq. (25) gives

EI{x∈Ck}Id(X,µk)≤B

∫
I{λk<ξ and ∀� �=kλ�>η}dF

× (λ1, . . . , λ̂k, . . . , λK)dF(λk)

+ EI{x∈Ck}Id(X,µk)≤B

∫
I{λk>ξ and ∀� �=kλ�>η}dF

× (λ1, . . . , λ̂k, . . . , λK)dF(λk) (27)

as an asymptotic lower bound on the first term of Eq. (24).
Clearly, as ξ → 0, the first term in Eq. (27) goes to zero
and the second term goes to P(Ck). �

4.4. Q∞ for a Mixture Distribution

In this section, we verify an asymptotic property of
our stability criterion under the extra assumption that the
probability P is a mixture of distributions. Suppose the
density p of P can be written as

p(x) =
KT∑
k=1

αkψk(x|µk, σk), (28)

where

µk =
∫

xψk(x|µk, σk)dµ(x),

and αk ∈ (0, 1) for k = 1, . . . , KT with
∑

k αk = 1. Here,
σk is a measure of concentration for ψk with the property
that

ψk(·|µk, σk) → δµk
as σk → 0,

where δµk
is unit mass at µk . In the special case that the

ψk’s are normal it is reasonable to take σk = √
Vark(X)

where the variance is taken in the distribution with
density ψk . However, we do not require the ψk’s to be
normal.

As before we take C = (C1, . . . , CKT
) to be the correct

clustering. For instance, if d(·, ·) is squared error and
the ψk’s are normal with KT modes then C could be
the usual partition of the X-space into KT classes based
on, say, Fisher’s Linear discriminant analysis. That is,
(C1, . . . , CKT

) would roughly correspond to regions around
the KT modes in Eq. (28) where each of the ψk was highest.
This is similar to the optimality of K-means clustering as
established in ref. [16].

Note that partitioning the range of X is equivalent to
rewriting Eq. (28) in disjoint form. That is, it is equivalent

to write

p(x) =
KT∑
k=1

α̃kψ̃k(x|µ̃k, σ̃k) (29)

where

ψ̃k(x|µ̃k, σ̃k) = p(x|µk, σk)ICk

P (Ck)
,

are the disjoint, normalized forms of the ψk’s and retain

µ̃k =
∫

xψ̃k(x|σ̃k, σ̃k)dµ(x)

and

ψ̃k(·|µ̃k, σ̃k) → δµ̃k
as σ̃k → 0.

The distinction between Eq. (28) and the disjoint form Eq.
(29) is important because we evaluate the performance of
a clustering using Eq. (28) but in fact when we have a
candidate clustering, we only have a partition of the data
that gives a partition of the X-space and the data on the
partition elements only correspond to a coarse estimate of
the terms in Eq. (29).

For C, write

Q∞(KT , σ )

=
KT∑
k=1

Eσ ICk

∫
I{∀� �=k:λkd(X,µk)≤λ�d(X,µ�)}dF(λKT ) (30)

where σ = (σ1, . . . , σKT
) and the component means

µ1, . . . , µKT
are understood in the notation Eσ even though

not explicitly indicated. Analogously, for another clustering
C′ = (C ′

1, . . . , C
′
K ′), write

Q′
∞(K ′, σ ′)

=
K ′∑
k=1

Eσ ′IC′
k

∫
I{∀� �=k:λkd(X,µ′

k
)≤λ�d(X,µ′

�
)}dF(λK ′

) (31)

where the centroids are µ′
k = Eσ ′XIC′

k
for k = 1, . . . , K ′

and σ ′ = (σ ′
1, . . . , σ

′
KT

) (the same parametrization, but
possibly different values).

One may argue that it is more reasonable to compare
Q′∞(K ′, σ ′) to a version of Q∞(KT , σ ) taking expectations
using 29 rather than Eq. (28). However, the differences are
small and do not affect the main results of this section
comparing the optimal clustering C and an alternative
clustering C′. The reason is that a result only seems to be
feasible when the component variances go to zero. When
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this holds, the support of the mixture components outside
Ck’s go to zero as well because the components concentrate
on their centroids.

THEOREM 3: Fix C′ with P(C ′
k) > 0 for all k =

1, . . . , K ′. We have the following three properties of Q∞:
(i) If K ′ ≥ KT + 1 and each Ck has at most one of the µk’s
in it, then

lim
σ→0

Q∞(KT , σ ) ≥ lim
σ ′→0

Q′
∞(K ′, σ ′).

(ii) If K ′ ≤ KT − 1, then

lim
σ→0

Q∞(KT , σ ) > lim
σ ′→0

Q′
∞(K ′, σ ′).

(iii) In general,

lim
σ→0

Q∞(KT , σ ) ≥ lim
σ ′→0

Q′
∞(K ′, σ ′).

Remark: The theorem is weak because it uses limits
as σ, σ ′ → 0. However, it is not clear which stronger
statements are true. For instance, we have been unable to
show

∃σ0 ∀σk, σ
′
k < σ0 Q∞(KT , σ ) ≥ Q′

∞(K ′, σ ′),

that is, the main point of the theorem is true pre-
asymptotically (in σ, σ ′), although we conjecture it is true.
The limitation in proving this seems to be dealing with
the possible differences between the µk’s for C and the
µ′

k’s for C′. More precisely, we have not been able to
identify reasonable hypotheses that preserve the inequality
of the result; we comment on this in a remark after the
proof. On the other hand, if no limit is taken over σ then
the result may be false or meaningless. Indeed, Ray and
Lindsay [17], see Section 1.2, observes that a mixture of
two distinct normals can be unimodal. A fortiori, a mixture
of K normals may have strictly fewer than K modes.
In these cases it is not clear whether two components of
the mixture represent two meaningful sub-populations or
the unimodal mixture itself represents a single population
with dispersion greater than a single normal component
permits. Thus, whether Q∞(KT , σ ) where KT is the
number of components in a mixture Eq. (28) ideally should
be bigger or smaller than Q′∞(K ′, σ ′) is a question of
physical modeling not statistical evaluation. So, reducing
a clustering to its modal structure by taking limits over σ

may be effectively necessary for evaluation of stability in
general.

Proof: We begin with (i). First consider a cluster C ′
k′ in C′

that does not contain any of the µk’s from the Ck’s. The

component in Eq. (31) corresponding to C ′
k′ is

Eσ ′IC′
k′

∫
I{∀� �=k:λ′

k′d(X,µ′
k′ )≤λ′

�
d(X,µ′

�
)}dF(λK ′

)

≤ Pσ ′(C ′
k′) → 0, (32)

as σ ′ → 0. This means that the terms in Eq. (31)
corresponding to clusters with none of the µk’s in them
contribute zero asymptotically as σ ′ → 0.

Now, suppose K ′ = KT + K where K ≥ 1 and that, by
relabeling if necessary, C ′

1, . . . , C
′
KT

have exactly one µk in
each of them and C ′

KT +1, . . . ,C
′
KT +K do not have any of the

µk’s in them and for k = 1, . . . , KT µk ∈ C ′
k . We have that

Q′
∞(K ′, σ ′) =

KT∑
k=1

Eσ ′IC′
k

∫
I{∀� �=k:λkd(X,µ′

k
)≤λ�d(X,µ′

�
)}dF(λK ′

)

+
KT +K∑

k=KT +1

Eσ ′IC′
k

∫
I{∀� �=k:λkd(X,µ′

k
)≤λ�d(X,µ′

�
)}dF(λK ′

).

(33)

By Eq. (32), the terms in the second sum are o(1) as
σ ′ → 0. For the kth term in the first sum in Eq. (33) we
have that∫

I{∀� �=k:λkd(X,µ′
k
)≤λ�d(X,µ′

�
)}dF(λK ′

) (34)

→
∫

I{∀� �=k:λkd(µk,µ′
k
)≤λ�d(µk,µ′

�
)}dF(λK ′

),≤ 1

and that P(C ′
k) → αk as σ ′ → 0. Using Eq. (34) in Eq.

(33) gives

lim
σ ′→0

Q′
∞(K ′, σ ′) ≤

KT∑
k=1

αk = lim
σ→0

Q∞(KT , σ ), (35)

as claimed in (i).
Next, we show (ii). To begin, consider the special case that
K ′ = KT − 1 and that C′ has exactly one element, say C ′

1
(relabel if necessary) with exactly two µk’s in it and the
other C ′

2, . . . , C
′
K ′ have exactly one µk i each of them so

that µk+1 ∈ C ′
k for k = 2, . . . , K ′. Then, as σ ′ → 0,

Q′
∞(K ′, σ ′) = Eσ ′IC′

1∩C1

×
∫

I{∀� �=1:λ1d(X,µ′
1)≤λ�d(X,µ′

�
)}dF(λK ′

) + Eσ ′IC′
1∩C2

×
∫

I{∀� �=1:λ1d(X,µ′
1)≤λ�d(X,µ′

�
)}dF(λK ′

) + Eσ ′IC′
1\(C1∪C2)

×
∫

I{∀� �=1:λ1d(X,µ′
1)≤λ�d(X,µ′

�
)}dF(λK ′

)
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+
K ′∑

k′=2

Eσ ′IC′
k′

∫
I{∀� �=k′:λk′d(X,µ′

k′ )≤λ�d(X,µ′
�
)}dF(λK ′

)

−→ α1

∫
I{∀� �=1:λ1d(µ1,µ′

1)≤λ�d(µ1,µ′
�
)}dF(λK ′

)

+ α2

∫
I{∀� �=1:λ1d(µ2,µ′

1)≤λ�d(µ2,µ′
�
)}dF(λK ′

)

+ o(1)

+
K ′∑

k′=2

αk′+1

∫
I{∀� �=k′:λk′d(µk′+1,µ′

k′ )≤λ�d(µk′+1,µ′
�
)}

× dF(λK ′
) (36)

<

KT∑
k=1

αk = lim
σ→0

Q∞(KT , σ ). (37)

More generally, the same reasoning holds if K ′ ≤ KT

−1 and some C ′
k’s have no µk’s in them and other C ′

k’s
have 1, 2, or more µk’s in them. Specifically, C ′

k’s with
no µk’s in them are o(1) as σ ′ → 0; C ′

k’s with exactly
one µk in them contribute at most αk (if µ′

k = µk) and
C ′

k’s with two or more µk’s in them contribute terms
of the form of the first two terms in the limit above,
that is, are strictly bounded above by a sum of the
corresponding αk’s.

For part (iii), begin by writing K ′ = K1 + K2 + K3 and
partition the clusters in C′ into sets of size K1, K2 and
K3 where the first K1 members C ′

k’s with means µ′
k do

not contain any of the µk’s, the second K2 members
C ′′

k ’s with means µ′′
k contain exactly one of the µk’s and

the third collection of K3 members C ′′′
k ’s with means

µ′′′
k contain two or more of their µk’s. This means we

have that

Q′
∞(K ′, σ ′) =

K1∑
k=1

Eσ ′IC′
k

∫
I{∀� �=k′:λkd(X,µ′

k
)≤λ�d(X,µ∗

�
)}

× dF(λK ′
)

+
K2∑
k=1

Eσ ′IC′′
k

∫
I{∀� �=k′:λkd(X,µ′′

k
)≤λ�d(X,µ∗

�
)}dF(λK ′

)

+
K3∑
k=1

Eσ ′IC′′′
k

∫
I{∀� �=k′:λkd(X,µ′′′

k
)≤λ�d(X,µ∗

�
)}dF(λK ′

), (38)

in which µ∗
� indicates that all the µ′

k’s, µ′′
k ’s, and µ′′′

k ’s are
included.
As in Eq. (32), if K1 ≥ 1, the first sum in Eq. (38) is o(1)

as σ ′ → 0.

As in bounding Eq. (36) by Eq. (37), if K2 ≥ 1, the second
sum in Eq. (38) converges to

K2∑
k=1

α′′
k

∫
I{∀� �=k:λkd(µk,µ′′

k
)≤λ�d(µk,µ∗

�
)}dF(λK ′

) ≤
K2∑
k=1

α′′
k

(39)

with equality if the cluster means of the clusters C′ are
the same as for C, as σ ′ → 0. Note that in Eq. (39) the
notation α′′

k is used to indicate the weight of the component
of the mixture distribution appropriate to the C ′′

k and that
we have used µk generically to mean the limit of X on Ck

as σ ′ → 0.
The third sum in Eq. (38) converges like the first two

terms in Eq. (36), that is, to a number strictly less than

K3∑
k=1

α′′′
k ,

as σ ′ → 0, (provided K3 ≥ 1), where the α′′′
k ’s are the

components of the mixture distribution appropriate to the
C ′′′

k ’s. Since there are K2 + K3 weights αk and all of them
appear in the limits of the second and third sums in Eq.
(38) we have that

lim
σ→0

Q′
∞(K ′, σ ′) ≤

KT∑
k=1

αk = lim
σ→∞ Q∞(KT , σ ),

so that (iii) follows. �

Remark: It is seen that Eq. (34) is strict unless all
µk = µ′

k for k = 1, . . . , KT . Thus, equality in Eq. (34)
holds if Ck = Ck′ and for some carefully chosen C′’s but
in general is not typical for C′. This means that Eq. (35) is
typically strict in practice. Using this and part (ii) suggests
that we will often get strict equality in part (iii), but we do
not have a proof of this.

Indeed, observe that if KT = K ′ and the clusters in C
correspond to the clusters in C′, we can compare the limits
of Q′∞(KT , σ ′) and Q∞(KT , σ ) directly as σ, σ ′ → 0. In
fact,

Q∞(KT , σ ) =
KT∑
k=1

Eσ ICk

×
∫

I{∀� �=k:λkd(X,µk)≤λ�d(X,µ�)}dF(λKT ) →
KT∑
k=1

αk = 1,

as in Proposition 1. By contrast, if µk,µ
′
k ∈ Ck,C

′
k , then

Q′
∞(KT , σ ′) =

KT∑
k=1

Eσ IC′
k

×
∫

I{∀� �=k:λkd(X,µ′
k
)≤λ�d(X,µ′

�
)}dF(λKT )
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→
KT∑
k=1

αk

∫
I{∀� �=k:λkd(µk,µ′

k
)≤λ�d(µk,µ′

�
)}dF(λKT )

≤
KT∑
k=1

αk = 1 = lim
σ→0

Q(KT , σ ),

with equality if and only if all µk = µ′
k . If we were to

reverse the roles of C and C′, we would get the reverse
inequality in the limit when K ′ = KT , but there is an
asymmetry in that C is assumed to be optimal while C′ is not.
Further, if µk = µ′

k but C �= C′, then we cannot reasonably
distinguish between clusterings with the same number of
clusters asymptotically as σ, σ ′ → 0.

5. CHOOSING THE NUMBER OF CLUSTERS

Recall the definition of the pointwise stability PWi in
Eq. (2.1) and the definition of Qn(K) in Eq. (12). Taking
an average over the data points gives the average pointwise
stability, APW = (1/n)

∑n
i=1 PWi . Now,

APW ≈ E(APW|∀i xi is in its correct Ck)

= 1

n

n∑
i=1

E(PWi |xi is in its correct Ck)

≈ E(Qn(K)|∀i xi is in its correct Ck)

≈ Qn(K) ≈ Q∞(K),

at least for large n. So, our empirical stability criterion Qn

is approximated by the APW. Given this, we shift attention
from Qn or Q∞ to the APW and show how the APW can be
used—after rescaling—to find an estimate for the correct
number of clusters. Note that the asymptotic equivalence
of APW and Qn means that, by Theorem 2, our estimate
of K will be consistent. Moreover, in Section 7 we will
observe that our method is also usually more efficient that
several other methods.

5.1. Scaling the Averaged Pointwise Stability

Again let hi be the index of the cluster to which xi

belongs. Write the APW of a clustering Ĉ = (Ĉ1, . . . , ĈK)

as

APW = 1

n

n∑
i=1

PW(hi, d(xi, Ĉ1), ..., d(xi, ĈK)), (40)

in which

PW(hi, d(xi, Ĉ1), ..., d(xi, ĈK)) = Fθ({λK : λhi
d(xi, Ĉhi

)

≤ λ�d(xi, Ĉ�)∀� �= hi}), (41)

where θ is a hyperparameter in the prior F .

Although the APW is consistent for the correct number
of clusters, in practice we propose a statistic formed by
scaling the APW by a baseline APW value that we denote
APWbase. Assessing the APW relative to a baseline value
indicates how stable a clustering is relative to an arbitrary
assignment of points to clusters. In effect, we compare the
APW to what its null hypothesis value would be if it were
used as a statistic in a non-parametric permutation test. This
allows us to associate uncertainty information to the APW
and calibrate for spurious structure in the data. For instance,
if there is no clustering at all, we expect APW  APWbase.
For this reason, use log(APW/APWbase) as our statistic; if
it is not positive, then the clustering is unstable.

To find a suitable baseline value for APW, we first used
a bootstrap procedure on the n × K individual distance
measures instead. For b = 1, 2, ..., NK , we created a new
n × K point-to-cluster distance matrix with entries drawn
at random from the original distances. We then computed
the average pointwise stability on this sampled baseline
distance matrix, giving APWb.

Then, for each value of b we find

SK,b = log
APW

APWb

(42)

giving NK stability scores for the clustering Ĉ1, . . . , ĈK .
Effectively, SK,b actually represents an outcome of a

random variable SK that is a function of the data points
and it is as if we have NK independent outcomes of it.
In principle, we have this for each K in a range, so
we can describe a technique for choosing K in terms of
the distributions of the SK ’s implied by the values SK,b

for b = 1, . . . , NK . Although we have permitted NK to
depend on K , in practice we have set NK = 100 in all our
calculations below and verified that this was large enough to
identify the K’s of stable clusterings unambiguously. Had
NK = 100 not been large enough, we would just choose NK

larger until we either got unambiguous results or accepted
that unambiguous results are unattainable.

5.2. Maximizing E(SK) to Find the Number
of Clusters

For each K , we have implicitly defined a random variable
SK and by bootstrapping we have a sample of size NK

from it. Treating this sample as IID, we find the smallest
K achieving maxK E(SK). The idea is that we want as few
clusters as possible (to avoid dividing large clusters) but
we want the largest value of E(SK) because it represents
the K for which the APW is largest relative to its baseline,
that is, the cluster of size K that is most stable.

One procedure that approximately does this in the cases
we have examined is the following.
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1. Choose K∗ that maximizes E(SK) or, more exactly,
its empirical estimate (1/NK)

∑NK

b=1 SK,b.

2. Choose K∗∗ as the smallest element in the set
{2, 3, ..., K∗} such that a one sided t-test does
not show a statistical significant difference between
E(SK∗∗) and E(SK∗) using the NK∗ data points from
SK∗ (formed by the NK∗ bootstrap samples) and the
NK∗∗ data points from SK∗∗ . In other words, for each
K satisfying 2 ≤ K ≤ K∗ − 1, do the one sided t-
test H0: ESK∗ ≤ ESk∗∗ vs. H1: ESK∗ > ESK∗∗ and
choose the lowest K∗∗ for which the null is not
rejected at, say, the 0.05 level. If the null is rejected
for K = 2, ..., K∗ − 1, set K∗∗ = K∗.

3. Set K̂ = K∗∗ if the 2.5% quantile of SK∗∗ is positive;
otherwise, set K̂ = 1.

This procedure produces an estimate K̂ of the true value
of K , assuming (i) prior selection has already been done,
for instance, as in Section 6 and (ii) that for each K

we already have identified an optimal clustering. This is
possible for clustering techniques such as K-means and
most hierarchical methods.

An illustration of this procedure is provided in Fig. 5.
We call Panel (a) a stability curve because it shows the
relative stability of a series of clusterings of size K via a
series of boxplots, one for each candidate value of K , using
the values SK,b for b = 1, . . . , NK = 100. The midline of
each box is the median for the corresponding value of K .
Clearly, choosing all NK ’s to be 100 is enough to see that
K = 4 has the highest value of the estimate of E(SK) and
that the estimate of E(S3) is below the estimate of E(S4)

so K̂ = 4, the correct value.
Panel (b) shows the data clustered into four clusters

and (c) the stability heatmap for the clustering. Panels
(d) and (f) are similar, but for neighboring values K =
3, 5. The three clusters in panel (d) do not look like a
good summary for the data and the heatmap (e) indicates
that the cluster represented by the lower left block is
not very stable. This corresponds to cluster three in the
plot of the data. By contrast, it is seen in Panel (g) that
five clusters is relatively stable at the cost of splitting
the points on the right into three clusters (5, 1, and
4) when (b) shows two is enough. However, panel (g)
shows that fewer of the clusters in (f) are stable compared
with (c).

6. PRIOR SELECTION

The general theory presented here holds for any prior
density w(λ|θ) equipped with a hyperparameter θ that can

be tuned. The interpretation of the key stability quantities
assumes w(λ|θ) is continuous in θ and that as a function
of θ the density is smoothly deformable. So, the range of
choices for w(λ|θ) that can give good results in principle is
relatively unconstrained. Nevertheless, for computing, we
must fix a family of priors. In our examples to follow,
as in the computations shown in Section 2, we have used
the exponential family shifted by one. So, in this section
we explain our method for hyperparameter selection in
general and then we explain how it applies to the shifted
exponential.

6.1. The General Method

Assuming that the prior F to be used on the λk’s
(k = 1, . . . , K) is IID and depends smoothly on a finite
dimensional real parameter θ , it is enough to identify a
function of θ we can maximize. The natural choice is the
cumulative stability

∑
K∈[K1,K2] E(SK). That is, we find θ

by maximizing the difference between the log stability of
the clustering and the log baseline stability for the K-cluster
clustering, averaging over K and the sample space. As this
is a population quantity we use the natural empirical analog.
That is, we write

1

K2 − K1

K2∑
K=K1

E(SK) ≈ 1

K2 − K1

×
K2∑

K=K1

(
1

NK

NK∑
b=1

log
APW

APWb

)

= 1

K2 − K1

K2∑
K=K1

(
1

NK

NK∑
b=1

log
(1/n)

∑n
i=1 PW(xi)

(1/n)
∑n

i=1 PWi (b)

)

= 1

K2 − K1

K2∑
K=K1

log
1

n

n∑
i=1

PW(xi)

− 1

K2 − K1

K2∑
K=K1

(
1

NK

NK∑
b=1

log
1

n

n∑
i=1

PWi (b)

)
, (43)

where PW(xi) is defined in Eq. (5) and PWi (b) is
a summand in Eq. (41). Both PW(xi) and PWi (b)

depend on F and hence on θ so the right hand side
of Eq. (43) can be maximized over θ to approximate
the maximum of the left hand side over θ . When θ is
one-dimensional, as here, this can be done easily by a
simple Brent bisection algorithm; as noted in Section 5.1,
we took NK = 100. All examples in this paper use this
method.
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Fig. 5 Two dimension toy example with 200 data points generated from a mixture model with four components. Panel (a) shows, for
each K , the boxplot for the bootstrap sample for SK and it is easy to see K̂ = 4. Panel (b) shows the correct clustering and (c) its stability
heatmap. Panels (d) and (f) are the same as (b) but the clusterings are optimal for incorrect K’s, with heatmaps as in (e) and (g). [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

6.2. Shifted Exponential Prior

The most useful prior we have found thus far for scale
perturbations on the relationships among the d(xi, Ĉk)’s is
the exponential distribution with the location shifted by one.
That is, we set

f (λ|θ) = θe−θ(λ−1)Iλ≥1, (44)

as the density of Fθ . We defend this choice through a series
of arguments; for ease of exposition, when possible, we
henceforth drop the index i in the φik’s since the data are
IID.

First, Eq. (44) is among the simplest priors we can
choose that has a satisfactory interpretation. There are two
parameters, θ and the shift (chosen to be one) that we
think make sense to include. First, the interpretation of θ is
straightforward: If θ → ∞ then the priors assign unit mass
at the shift value, reducing the φk’s to a function of the
point-to-cluster distances namely φik = aik = I∀� �=k: dik≤di�

(see 4), a sensible limit. If θ → 0 then ratios of the form
λj/λk have a distribution more and more like a ratio of
independent uniforms on [1,∞), representing significant
perturbation that tends to overwhelm the original distance

measures. In between zero and ∞ we have values of θ that
are sensitive to the point-to-cluster distances and adapt to
the relative location of the data points and cluster centers,
as well as to the dimension of the data. This means that θ

has a reasonable interpretation.
If we retain the interpretation of θ but use a simpler prior

such as the exponential distribution without the shift, that
is, θe−θλ for λ ∈ (0,∞) we can derive

φik = d−1(xi, Ck)∑K
�=1 d−1(xi, C�)

, (45)

see ref. 18. This is superficially reasonable: If d1 is small
then the corresponding entry in φk will be close to one, its
maximal value. On the other hand, if all dk’s are similar in
size then the corresponding entry in φk will be near 1/K ,
its minimal value. However, a shift of zero is unreasonable
because the φk’s do not depend on θ so the stability
measure cannot adapt to the clustering. In such cases,
two clusterings with the same point-to-cluster distances
will be seen as equally stable even when (for instance)
the points are arranged very differently or the dimension
increases.
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If we retain the interpretation of θ but use a more
complicated prior, for example, a shifted Gamma prior, the
results from stability assessments were no better than what
we found with the shifted exponential—but were much
harder to compute. Normal priors performed quite badly,
see ref. 18. Indeed, the main point of Proposition 2 below
is to generalize from Eq. 45 to the shifted exponential
(for computational purposes). This is not easy; generalizing
further would be even more difficult. On the other hand,
a sufficiently general search over priors might result in a
better choice than Eq. (44).

We set the shift to one for convenience. As noted
in our interpretation of θ , the role of the shift is in
the ratios λj/λk . So, any nonzero shift would have the
same qualitative effect. The main change would be in
the numerical value of θ found to be optimal in Eq.
(43). Overall, the shifted exponential prior is the simplest,
interpretable, computationally efficient prior that we found
that gave good performance.

To proceed with the analysis using a shifted exponential
prior, denote the corresponding averaged assignment matrix
with a superscript LE:

�LE = [φLE
ik ]i=1,...,n;k=1,...,K

=
(∫

I∀� �=k: λkdik≤λ�di�

K∏
�=1

f (λ�|θ)dλK

)
i=1,...,n;k=1,...,K

.

To implement a procedure for finding �LE computationally,
we first find a relatively convenient expression for the φLE

k ’s
in terms of the dk = d(·, Ck)’s.

PROPOSITION 2: Let d = (d1, . . . , dK) be a list of
K distances and let ψ : {1, . . . , K} → {1, . . . , K} be the
bijection that puts d in sorted order, that is, dψ(1) ≤ . . . ≤
dψ(K). Define

Bk = θ

k∑
j=1

1

dψ(j)

Ck =
{

1 k = 1

exp
[
−θ

∑k−1
j=1

(
dψ(k)

dψ(j)
− 1

)]
k ∈ {2, . . . , K}

Dk =
K∑

j=k+1

Cj

[
Bj−1

(
Bj−1dψ(j)

θ
+ 1

)]−1

.

Then,

φLE
k = θ

dk

(
Cψ−1(k)

Bψ−1(k)

− Dψ−1(k)

)
.

Remark: Proposition 2 can be generalized to non-
IID λk’s, see ref. 18, in which case λK has density
f (λK |θ1, . . . θK) = ∏

k f (λk|θk) so K values of θ must be
estimated, one for each cluster.

Proof: The technique of proof is to use Fubini’s Theorem
on φk , integrate over some of the λ’s, and then break up the
domain of integration to recognize the B’s, C’s and D’s.
The details are given in Appendix B. �

Proposition 2 justifies Algorithm 1 below which essen-
tially pre-computes the common terms. The running time
of this algorithm is linear in K apart from the call to order
the entries of d, which runs in O(K log K) time. Thus, the
overall running time is O(K log K) for each data point.

We use this procedure in Section 7, without further
comment, to choose appropriate values for θ in a variety
of examples involving simulated and real data.

7. COMPUTED EXAMPLES

In this section we demonstrate the effectiveness of our
approach in comparison with several other popular cluster-
ing stability methods, namely the gap statistic, subsampling,
and the silhouette distance. While numerous other methods
exist, we argue these are a good representation of the vari-
ety of approaches to cluster stability since their motivations
are disjoint from each other and from our proposed method.
The gap statistic is the standard version from ref. 9, with
the bounding box for the uniform null distribution chosen
using the principle components of the sample. Likewise, the
silhouette score is the standard one from ref. 8. The subsam-
pling method we chose as representative of the numerous
variants in the literature, was to divide the data randomly
into three equal groups, then for given K , find a clustering
into K clusters for each of the three distinct pairs formed
by excluding one of the groups. Then, using the variation
of information metric, we scored the clustering on each pair
with the original clustering an the full data set, discarding
points from the full data set that were not in the pair. The
overall stability was then the average of the three pairwise
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scores. This procedure was repeated 100 times on randomly
chosen partitions of the data into the three groups, with the
final score being the average score over 100 runs. The esti-
mate of K is the K̂ with the lowest final score. Code for
the instantiation of all these methods, and the new methods
in this paper, is available on request from the first author,
pending the release of an R package.

7.1. Synthetic Data

To compare our method for choosing K with these
three standard methods, we first generate synthetic data
for clustering purposes using the method described in
detail in ref. 18. This method works by first generating
points from a mixture of normal components where the
components are separated so its clear what the clusters
are. Then, a series of transformation is applied to the
data points to situate them in a random non-linear, non-
orthogonal coordinate system. Next, the points in the K

clusters are reallocated so that each component in the final
clustering is separated by a drop in the mixture model
density p(x) down to or below β min(p(mk1), p(mk2)),
where the minimum is taken over all components k1 and k2

with mk1 and mk2 denoting the modes of these components.
The parameter β ≤ 1 is set by the user to control how
much the density between each pair of clusters must drop,
effectively controlling the separation between the clusters.
The other user set parameter, the ‘severity’, controls how
far from linearity a coordinate transformation will be on
average. The resulting clusters are unimodal but shaped far
differently, for example, rarely convex, often looking like
a drop of paint that had been smeared haphazardly. This
makes the components of the new data set difficult to model
by standard techniques, challenging both the clustering
and validation stages—although, because we generated the
data, we know what the correct clusters are.

For our experiments, we used three classes of normal
mixtures in in 2, 5, 10, and 20 dimensions, and with 100,
150, 200, and 300 data points each, respectively. These
classes were as follows.

T 1: This class has four mixture components and uses
significant nonlinear transformations to give the
components more difficult shapes.

T 2: This class has five mixture components, but fewer
sheering and scaling operations so the clusters are
better modeled by a centroid-based method such as
k-means.

T 3: This class is formed by taking samples from a
single unimodal normal density. This tests the ability
of the methods to detect when there is no actual

clustering, that is, K = 1. To make this a bit more
difficult, the standard deviation of each dimension
increases linearly from 1 to 2 over the dimensions.
Thus, in the 2d example, X ∼ N(0, �), where � =
((1, 0), (0, 2)). In the 20d case, the standard deviation
for dimension 10 is 1.5, and the standard deviation for
dimension 20 is 2.

For classes T 1 and T 2, we fixed the severity of the
nonlinear transformations and then adjusted the β parameter
controlling the component separation until the results were
able to distinguish between the methods. For the first class,
the resulting β’s were 0.55, 0.5, 0.45, and 0.35; for the
second class, β was 0.7, 0.6, 0.55, and 0.45. It is seen that
these values are roughly in the middle of [0, 1] indicating
that the separation is not so low as to make clustering easy
nor so high as to make clustering impossible.

To test the clustering evaluation procedures on a given
sample, we used K-means to find a candidate clusterings
with K centroids. To reduce problems from a bad
clustering, K-means was seeded from perturbed values
of the known modes, then run 10p times, where p is
the dimension. Of these runs, the one with the lowest
cost function was chosen as the candidate clustering. The
clustering procedure was the same for baseline and sub-
sampled distributions.

Tables 1, 2, and 3 show the results of our simulations
for the three classes of data. We labeled the results of our
method ‘perturbations’ because the underlying motivation
is the perturbation of distances by factors λk . Note that in
addition to the four stability methods already discussed, we
included a variation on our method called ‘perturbations
with average linkage’. Average linkage is not a metric and
so does not fall under the hypotheses of our theoretical
results, however, average linkage is arguably the most
popular choice of linkages for hierarchical clustering. In
this case, we set

d(xi, Ĉk) =
√√√√ 1

|Ĉk|
∑
j∈Ĉk

‖xi − xj‖2
2, (46)

where ‖ · ‖ is the Euclidean distance.
Table 1 is for data from class T 1. The column headed

‘Data set’ indicates the key features of the data (class,
dimension, correct number of clusters, and sample size).
For each of the five methods we did 100 runs, that is,
formed 100 estimates K̂ using each method to estimate
K = Ktrue = 4. The last 12 columns show the sampling
distribution of K̂ for the methods. It is seen that in all but
one setting the perturbation method using the Euclidean
distance is best in the sense that its sampling distribution
is most peaked around the correct number of clusters. The
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Table 1. Sampling distributions for K̂ for T 1 data examples. The two perturbation methods are seen to be most concentrated around
the true value K = 4 in all cases.

Data set Method K̂ → 1 2 3 4 5 6 7 8 9 10 11 12

T 1, 2d , K = 4, n = 100 Gap 16 10 3 57 12 2 0 0 0 0 0 0
T 1, 2d , K = 4, n = 100 Subsampling 0 15 9 69 7 0 0 0 0 0 0 0
T 1, 2d , K = 4, n = 100 Silhouette 0 0 0 68 18 8 2 2 1 1 0 0
T 1, 2d , K = 4, n = 100 Pertubations 0 0 2 85 9 3 1 0 0 0 0 0
T 1, 2d , K = 4, n = 100 Pert. Avg. Linkage 0 0 3 87 8 2 0 0 0 0 0 0
T 1, 5d , K = 4, n = 150 Gap 6 4 0 37 31 11 10 1 0 0 0 0
T 1, 5d , K = 4, n = 150 Subsampling 0 18 6 62 13 1 0 0 0 0 0 0
T 1, 5d , K = 4, n = 150 Silhouette 0 2 2 67 19 4 5 1 0 0 0 0
T 1, 5d , K = 4, n = 150 Perturbations 0 2 6 78 11 2 1 0 0 0 0 0
T 1, 5d , K = 4, n = 150 Pert. Avg. Linkage 0 6 12 70 12 0 0 0 0 0 0 0
T 1, 10d , K = 4, n = 200 Gap 0 2 0 36 27 21 6 5 2 1 0 0
T 1, 10d , K = 4, n = 200 Subsampling 0 12 3 73 11 1 0 0 0 0 0 0
T 1, 10d , K = 4, n = 200 Silhouette 0 3 0 60 22 10 1 3 1 0 0 0
T 1, 10d , K = 4, n = 200 Perturbations 0 7 1 87 2 3 0 0 0 0 0 0
T 1, 10d , K = 4, n = 200 Pert. Avg. Linkage 1 12 12 66 7 2 0 0 0 0 0 0
T 1, 20d , K = 4, n = 400 Gap 0 6 0 32 35 15 8 2 2 0 0 0
T 1, 20d , K = 4, n = 400 Subsampling 0 2 0 87 9 2 0 0 0 0 0 0
T 1, 20d , K = 4, n = 400 Silhouette 0 1 0 82 10 7 0 0 0 0 0 0
T 1, 20d , K = 4, n = 400 Perturbations 0 7 1 89 2 1 0 0 0 0 0 0
T 1, 20d , K = 4, n = 400 Pert. Avg. Linkage 0 13 9 71 4 2 0 0 0 0 0 1

one exception is in two dimensions where the perturbation
method comes second to the perturbation method with
average linkage. We attribute this to the fact that clusters
from the T 1 class of data are not as well-summarized
by centroids as they are by average linkage, especially in
low dimensions. (As dimension increases, there is more
and more ‘space’ between points so centroid methods can
become more representative.) Nevertheless, in all cases,
one of the two perturbation methods is always best. The
gap statistic tends to be appropriately located but has a
much higher spread tending to be skewed upward for higher
dimensions. The subsampling method is also appropriately
located but tends to be skewed to one side or the other,
at least for the sample sizes we used. The silhouette
method was similar, but appeared to be skewed upward
too often.

Table 2 is for data from class T 2. These data sets were
generally a bit easier to cluster and are more amenable
to centroid methods than T 1 data. It is seen that the
perturbation method is again best in all cases but 20
dimensions, where subsampling does best, though in some
other settings the silhouette method is a close second. This
leads us to suggest that in higher dimensions the behavior
of stability methods for clustering may be qualitatively
different their behavior in lower dimensions because in the
limit of high dimensions all points become equidistant from
each other, see ref. 19 which shows

lim
d→∞

distmax − distmin

distmin
→ 0

where distmax, distmin are the maximal and minimal
distances between data points in d dimensions. This means
that distance measures become uninformative about the
clustering, a problem not suffered by subsampling methods
since they are not distance based. Nevertheless, all the
methods are again appropriately located but the sampling
distribution of the perturbation method is more concentrated
around the true value of K than for the other methods,
except for d = 20 where it is a close second.

Data from class T 3 is used as a sanity check to verify that
when there is only one cluster, the stability method will not
suggest it is unstable implying two or more clusters would
be more reasonable. Table 3 shows the results of this search
for spurious clusters. It is seen that the perturbation methods
are essentially the only ones that put appreciable, sometimes
very high, weight on choosing a single cluster, except in
two dimensions where the gap statistic does best. This may
due to the fact that a random uniform distribution, used
as the baseline distribution for the gap statistic, is, here, a
better null clustering to compare against for low dimensions
than for higher dimensions, that is, the uniform is a poor
baseline for normal data in higher dimensions. However,
this seems unimportant because all five methods do poorly
in this 2d case.

Overall, this simulation study shows that our method
gives results than are comparable or better than the
other given methods, sometimes by wide margin. This
improvement is not uniform—nor should we expect it to
be. It is just overall better than other methods for a large
class of problems with easy to moderately difficult data
and moderate dimension size. In the very few cases where
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Table 2. Sampling distributions for K̂ for T 2 data examples. The perturbation method is generally more highly concentrated around the
true K = 5, except for 20 dimensions where it is a close second to subsampling.

Data set Method K̂ → 1 2 3 4 5 6 7 8 9 10 11 12

T 2, 2d , K = 5, n = 100 Gap 16 33 26 7 17 1 0 0 0 0 0 0
T 2, 2d , K = 5, n = 100 Subsampling 0 32 11 7 43 7 0 0 0 0 0 0
T 2, 2d , K = 5, n = 100 Silhouette 0 1 1 6 52 19 11 5 3 1 0 1
T 2, 2d , K = 5, n = 100 Perturbations 0 0 4 19 64 10 2 1 0 0 0 0
T 2, 2d , K = 5, n = 100 Pert. Avg. Linkage 0 4 10 25 53 6 2 0 0 0 0 0
T 2, 5d , K = 5, n = 150 Gap 1 4 2 1 54 31 6 1 0 0 0 0
T 2, 5d , K = 5, n = 150 Subsampling 0 15 2 5 60 17 1 0 0 0 0 0
T 2, 5d , K = 5, n = 150 Silhouette 0 0 0 2 63 26 9 0 0 0 0 0
T 2, 5d , K = 5, n = 150 Perturbations 0 1 1 8 84 6 0 0 0 0 0 0
T 2, 5d , K = 5, n = 150 Pert. Avg. Linkage 0 4 5 19 65 7 0 0 0 0 0 0
T 2, 10d , K = 5, n = 200 Gap 0 2 0 0 60 22 13 2 1 0 0 0
T 2, 10d , K = 5, n = 200 Subsampling 0 7 0 1 82 8 2 0 0 0 0 0
T 2, 10d , K = 5, n = 200 Silhouette 0 1 0 0 83 7 6 3 0 0 0 0
T 2, 10d , K = 5, n = 200 Perturbations 0 3 4 7 84 1 1 0 0 0 0 0
T 2, 10d , K = 5, n = 200 Pert. Avg. Linkage 0 4 7 10 72 3 4 0 0 0 0 0
T 2, 20d , K = 5, n = 400 Gap 0 0 0 0 43 35 14 7 1 0 0 0
T 2, 20d , K = 5, n = 400 Subsampling 0 2 0 0 95 2 1 0 0 0 0 0
T 2, 20d , K = 5, n = 400 Silhouette 0 0 0 0 90 9 1 0 0 0 0 0
T 2, 20d , K = 5, n = 400 Perturbations 0 2 1 3 92 2 0 0 0 0 0 0
T 2, 20d , K = 5, n = 400 Pert. Avg. Linkage 0 4 4 16 71 5 0 0 0 0 0 0

Table 3. Sampling distributions for K̂ for T 3 data examples. Outside of low dimensions where no method works well, the perturbation
methods give the best results.

Data set Method K̂ → 1 2 3 4 5 6 7 8 9 10 11 12

T 3, 2d , K = 1, n = 100 Gap 14 82 4 0 0 0 0 0 0 0 0 0
T 3, 2d , K = 1, n = 100 Subsampling 0 95 5 0 0 0 0 0 0 0 0 0
T 3, 2d , K = 1, n = 100 Silhouette 0 80 1 1 0 1 1 3 3 1 0 9
T 3, 2d , K = 1, n = 100 Perturbations 0 10 28 20 18 10 7 1 5 1 0 0
T 3, 2d , K = 1, n = 100 Pert. Avg. Linkage 0 63 29 3 3 2 0 0 0 0 0 0
T 3, 5d , K = 1, n = 150 Gap 1 96 3 0 0 0 0 0 0 0 0 0
T 3, 5d , K = 1, n = 150 Subsampling 0 100 0 0 0 0 0 0 0 0 0 0
T 3, 5d , K = 1, n = 150 Silhouette 0 39 5 2 1 0 0 1 6 5 12 29
T 3, 5d , K = 1, n = 150 Perturbations 38 3 14 13 8 8 4 1 5 1 3 2
T 3, 5d , K = 1, n = 150 Pert. Avg. Linkage 80 6 3 3 1 3 0 1 0 1 2 0
T 3, 10d , K = 1, n = 200 Gap 0 100 0 0 0 0 0 0 0 0 0 0
T 3, 10d , K = 1, n = 200 Subsampling 0 100 0 0 0 0 0 0 0 0 0 0
T 3, 10d , K = 1, n = 200 Silhouette 0 2 0 0 0 0 0 0 1 10 29 58
T 3, 10d , K = 1, n = 200 Perturbations 97 3 0 0 0 0 0 0 0 0 0 0
T 3, 10d , K = 1, n = 200 Pert. Avg. Linkage 99 1 0 0 0 0 0 0 0 0 0 0
T 3, 20d , K = 1, n = 400 Gap 0 100 0 0 0 0 0 0 0 0 0 0
T 3, 20d , K = 1, n = 400 Subsampling 0 100 0 0 0 0 0 0 0 0 0 0
T 3, 20d , K = 1, n = 400 Silhouette 0 0 0 0 0 0 0 0 0 6 21 73
T 3, 20d , K = 1, n = 400 Perturbations 100 0 0 0 0 0 0 0 0 0 0 0
T 3, 20d , K = 1, n = 400 Pert. Avg. Linkage 100 0 0 0 0 0 0 0 0 0 0 0

perturbation methods are not best, they are a very close
second.

7.2. Stability Analysis of the Wisconsin Breast
Cancer Data Set

In this section we give a second—and easy—example
of how our method can be applied to real data. We use the

Wisconsin breast cancer data set first described in ref. 20
and available from ref. 21. Like the MNIST data set from
Section 2.2, this is a classification data set in which each
patient is classified as having malignant or benign breast
cancer. The sample size is 569 and there are a total of
ten explanatory variables representing measurements made
on cell nuclei. The two classes are fairly well separated.
Indeed, it is possible to find the two classes by clustering.
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Fig. 6 Top row: Stability analysis of complete linkage clustering of the studentized breast cancer data set using the cosine distance. As
can be seen in the K = 2 stability heatmap (b), this clustering has only a handful of points that are in the boundary region between the
two clusters. The (2, 1) block is quite light at the bottom indicating points that are falsely clustered. Using blue to indicate malignant
instances and green to indicate the benign instances it is seen that there are blue lines in the lower green block corresponding to points
that are falsely clustered. Furthermore, the heatmaps (c), (d), and (e) for clusterings with K = 3, K = 4, and K = 5 indicate that there
are two significantly stable clusters, one in the malignant class and one in the benign class. The other clusters are all on the boundary
regions. Bottom row: Stability analysis of complete linkage clustering of the raw breast cancer data set using the cosine distance. Again,
the clustering for K = 2 does not separate the classes distinctly as seen by the light patch at the bottom of the (2, 1) block, even though
the clusters themselves, and the stability score, indicate overall stability. The stability heatmaps for K = 3, 4, 5 suggest there are up to
two significantly stable clusters in the benign class and three significantly stable clusters in the malignant category. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

We first found two complete linkage hierarchical cluster-
ings for the data, measuring the distance between points by
the the cosine distance. The first used the data ‘as is’ while
in the second we studentized all ten explanatory variables.

The stability analysis for the two complete linkage
clusterings is shown in Fig. 6 and takes δ to be complete
linkage. (We used complete linkage to form the clusters
because it permits large, diffuse clusters, but switched
to average linkage for the stability analysis because it
favors more compact clusters, a desirable property for
stability.) Panels (a) and (f) show that for both forms of the
data K = 2 is the most stable. However, panel (a) shows
that studentization gives a clear fall-off of stability with
increasing K while the raw data shows a sharp drop from
K = 2 to K = 3 and a sharp rise from K = 3 to K = 4
leading to a local maximum at K = 5, even though the
global maximum is at K = 2.

The stability heatmaps for the clusterings with K = 2,
3, 4, and 5 are shown next to their respective stability
sequences. On the right of each heatmap we have added
an extra column coding malignant cases in blue and benign
cases in green. A blue line in the lower, mostly green,
region or a green line in the upper, mostly blue region
indicates a data point that has been put in a cluster different
from its class. This provides a visual assessment of how
far wrong the clustering is and is another way to represent
information in the off-diagonal blocks of the heatmap. It
is seen that for K = 2 with studentized data, the clustering
recovers the classes better than it does for the raw data. It is
also seen that the misclustered data points account for the
instability under perturbations (the blue lines in the green
region), indicating they are close to the boundary between
the two classes. The heatmaps for K = 2 also suggest that
the clustering on the raw data is more stable than on the
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studentized data for K = 2, even though it matches the
class labels worse.

For K ≥ 3, the heatmaps for the two clusterings are
even more revealing. For K = 3, the clustering on the stu-
dentized data is poor: Only two of the clusters show any
stability. However, with the raw data, the split in the lower,
green, benign region looks much more stable. For K = 4, 5
the heatmaps for the studentized data continue to show great
instability. However, the local maximum from the raw data
suggests that a splitting the blue region into two clusters
and the green region into two or three clusters continues to
reveal good stability. Additionally, the upper left block and
the (2, 2) block in the heatmaps for K = 4, 5 shows there
is a subclass of the malignant tumors that is well separated
and does not share a boundary with the other clusters, as
evidenced by the dark regions in blocks (1, 2) and (2, 1).
Other similar interactions between clusters, that is, along a
row, may also be observed. In particular, this stability anal-
ysis suggests that there are subclasses, particularly within
the malignant classes. This may be more useful than the
simple stability scores.

7.3. Analysis of the Yeast Data Set

As a third example of how our method can be applied, we
use the yeast data set first described in ref. 22 and available
from ref. 21. This too is a classification data set. The sample
size is 1484 and there are ten classes and eight explanatory
variables. Clustering on this data set is quite difficult, as
pointed out by Nakai and Kanehisa [22] as the classes
do not separate easily. In fact, in contrast to the breast
cancer data set where we found stable subclasses within
the two apparent classes, our analysis here finds seven or
eight classes is more stable than the ten apparent classes
suggesting that some of the classes overlap significantly.

Our analysis here begins by rounding the data, that is,
transforming by the inverse covariance matrix, and then
finding the K-means clusterings for a range of K . Then we
generated the stability sequence in Panel (a) of Fig. 7. This
shows K = 8 is most stable, but values five through nine
are not bad.

To investigate further, we plotted stability heatmaps
for K = 6, 7, 8, 9 in panel (b)–(e) of Fig. 7. As can be
seen, when K = 6, the blocks on the main diagonal are
not very light and on each row there is not a lot of
difference between the cluster from the main diagonal
and its competing clusters. For K = 7, the blocks off
the main diagonal are a little darker than those on the
main diagonal and the contrast is stronger for K = 8 and
K = 9. However, there is little (if any) improvement in the
contrast between the blocks on and off the main diagonal
in moving from K = 8 to K = 9. Note that the bars along
the right hand side of the heatmaps indicate how well the

clustering tends to reproduce the class labels. While the
classes do not separate well, the clusters tend to consist of
one or two characteristic classes, indicating that we have
indeed recovered some structure, an observation borne out
by noting that many of the clusters are well separated.
Furthermore, a practitioner can easily note from this plot
which clusters are well separated and which clusters border
each other—and may hence be regarded as overlapping to
the point that merging them should be considered. Such
structure is likely more interesting in practice than the
simple stability scores.

In this example we have presented the stability analysis
using sphered the data, rather than raw or studentized data,
because K-means clustering with the rounding of data gave
the most reasonable stability sequence and the heatmap of
the most stable clustering showed clear distinctions between
the classes. Although we did not present them here, the
stability sequences for the raw or studentized data had a
maximum at two and then declined. This seemed unrealistic
especially because the corresponding heatmaps did not dis-
play distinct well-separated components as clearly as panels
(b)–(e) of Fig. 7. As a generality is remains unclear when to
sphere, studentize or use the data ‘as is’ so in this example
we have only shown the most stable version we found.

7.4. Experimental Conclusions

To conclude this section, we comment briefly on the
overall performance of each of the methods we used here,
for the case that p is not too large relative to n.

Gap Statistic: The original gap statistic performs quite
poorly in comparison to other methods. There seem to
be two reasons. First, the gap statistic does not seem
to capture the most statistically significant clustering, but
rather the first statistically significant clustering and so it
does not distinguish well between two clusters and two
well-separated groups of clusters (with one or both of
the groups containing well-separated clusters). By focusing
on boundary regions defined by scaling perturbations, our
method better accounts for this situation. It should be noted,
however, that better use of the plot of the gap statistic as a
function of K may lead to better choices for K .

Second, when there is a single cluster that is long
and thin, breaking it into two separate clusters gives a
substantial drop in the dispersion measure on which the gap
statistic is based. This can cause two clusters to appear more
stable than one. For instance, as seen in the T 3 data (where
K = 1 is correct) in Section 7.1, the gap statistic routinely
chooses K̂ = 2 even though the boundary region between
the two clusters would clearly indicate K = 2 gives an
unstable clustering.

Subsampling: The subsampling method employed here
generally performs best among the methods we compared
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(a) Stability Sequence.
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(b) K = 6.
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(c) K = 7.

3 4 5 6 7 8 C
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(e) K = 9.
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Fig. 7 Top: The stability sequence for K-means clusterings for K = 2, . . . , 12 for the yeast data set. The most stable choice is K = 8.
Bottom: The stability heatmaps for K = 6, 7, 8, 9. The original ten classes have the following color codes: CYT is blue, ERL is dark
green, EXC is magenta, ME1 is bright green, ME2 is white, ME3 is dark blue, MIT is black, NUC is gray, POX is pink, and VAC is
red. These classes do not separate well but there are distinct groups forming each cluster, particularly at K = 8. The bar on the right of
each heatmap shows that most stable blocks tend to be from the same class but the tendency is not strong. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]
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against. However, it suffers several deficiencies. First,
subsampling is not able to choose K = 1 when a single
cluster is correct. Second, it suffers from the same
two effects that make using the gap statistic ineffective.
Specifically, a single long, thin cluster can be consistently
partitioned into two clusters under subsampling. Indeed, the
only case in which subsampling outperforms our method
is with the 20 dimensional T 2 data in Section 7.1 in
which the mixture components are tightly packed but have
shapes not too far from a standard normal. Furthermore, two
well-separated groups of clusters can bias the most stable
clustering toward low values of K̂ . In low dimensions,
where we expect this effect to be stronger, subsampling
consistently underestimates the number of clusters. On the
other hand, our results show subsampling handles these
cases better than the gap statistic.

Silhouette: The silhouette method is based on an intuition
that is similar to our method. However, our perturbation
method outperforms it in every example, particularly in
higher dimensions. We believe that our perturbation method
has three distinct advantages over silhouette. First, the
silhouette method only considers the distance between a
point and its closest two clusters; thus it does not account
for points close to the boundary of three or more clusters,
a less stable case. Second, the silhouette statistic does not
inherently include uncertainty information. This makes it
more difficult to choose between competing maxima; it
is unclear if the difference between two similar values is
because of inherent structure or noise. Finally, this prevents
the silhouette method from detecting the case where K = 1,
as there is no way to compare against the K = 1 case
meaningfully.

Perturbations with other distances: We used a minimum
of norms and an average linkage distance as the point-to-
cluster distance in Section 2.2 and in Sections 7.2 and
7.3. In the first, the minimum norm was necessary for
physical reasons and the heatmap did not indicate high
stability; the MNIST data likely does not have high cluster
stability. In the breast cancer and yeast data, the average
Euclidean distance did not always perform as well as might
be hoped. On the other hand, it is known that average
linkage tends to underestimate the number of clusters.
However, using average linkage still outperformed the gap
statistic in every case. Furthermore, it gives us a way to
apply our method when the notion of a centroid is not
clear.

8. CONCLUSIONS

We have proposed a new technique for assessing the
stability of a clustering. This technique is based on
evaluating the probability of a set of multiplicative factors

on the point-to-cluster distances that preserve their relative
sizes. In practice, if we have an optimal clustering of size
K , for each K in a range, then we compare the probability
to a baseline formed by taking bootstrap samples. We then
choose the value of K giving the largest value compared to
the baseline. We have shown that this method has appealing
theoretical properties such as consistency for K and that it
has behavior that matches what we would intuitively want
from a stability method. Indeed, as our examples show, our
methods provide not just an examination of overall stability
but also an examination of the stability of each cluster.

While our theory is limited to using point-to-cluster
distances that are metrics, the method itself is not. We show
this is two examples (Sections 2.2 and 7.2) and argue that
when centroid-based clustering is not appropriate it will be
necessary to use distances that respond to the shapes of
the clusters. This is not atypical: Silhouette distances can
become unrepresentative if the clusters are far from convex
and our perturbation methods can overstate the instability
of nonconvex clusterings.

We have not explicitly examined the performance of
our stability technique with high dimensional data—the
highest dimension we have considered is 20 –nor have
we studied our method in the case p > n. However, some
guidance can be given. First, p > n is permitted by our
theory; the question is how much larger than n we can
let p be while still getting useful results. Second, for
fixed n and Lp-metrics, clustering becomes unstable as
p increases relative to n unless the spread of the qth
coordinates (for q ≤ p) in the data points stays large
enough; see ref. 23. Moreover, even when the data points
are sufficiently distinct the geometry of a high-dimensional
data set may be better described by an ultrametric or
other technique intended for use in higher dimensions
[24].

The implication of these two points is that the appropriate
metric for stability assessment is a function of p and n as
well as the spread of the data. For p not too large (relative
to n), the case studied here, commonly used metrics or
linkages based on them will be appropriate. However, when
p is large enough, ultrametrics may be appropriate; it is
unclear whether the size of p alone or whether the size of
p relative to n is the defining feature of this case, see ref.
25, Sec. 5 and ref. 26, Sections 2 and 3.

Overall, the usefulness of our method for a given data
set rests on having made a reasonable choice for d to assess
the point-to-cluster distances and for the prior to assess how
perturbable the distances are. Reasonable choices depend
on the dimension p, how close the data points are to each
other and the cluster centroids. As long as d and the prior
accurately reflect the structure of the data, our method
should give good results; our theoretical results hold for
very general priors and distance measures.
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APPENDIX A. PROOF OF THEOREM 1

Let

φ1,k(Xi) = I{Xi∈Ck }
∫

I{∀��=k:λkd(Xi ,µ̂k )≤λ�d(Xi ,µ̂�)}dF(λK) (47)

and

φ2,k(Xi) = I{Xi∈Ck }
∫

I{∀��=k:λkd(Xi ,µk)≤λ�d(Xi ,µ�)}dF(λK). (48)

Clearly, Eφ2,k(Xi) = φk(X). So, for each k = 1, . . . , K , the triangle
inequality gives the bound∣∣∣∣∣ 1

n

n∑
i=1

φ̂k(Xi) − φk(X)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

n

n∑
i=1

φ̂k(Xi) − 1

n

n∑
i=1

φ1,k(Xi)

∣∣∣∣∣ (49)

+
∣∣∣∣∣ 1

n

n∑
i=1

φ1,k(Xi) − 1

n

n∑
i=1

φ2,k(Xi)

∣∣∣∣∣ (50)

+
∣∣∣∣∣ 1

n

n∑
i=1

φ2,k(Xi) − Eφ2,k(X)

∣∣∣∣∣ , (51)

in which it is easy to see that Eq. (51) → 0 by the law of large numbers.
To show Eq. (49) goes to zero, note it is∣∣∣∣∣ 1

n

n∑
i=1

∫
Iλkd(Xi ,µ̂k )≤min� �=k λ�d(Xi ,µ̂�)

(
IXi∈Ck

− I
Xi∈Ĉk

)
dF(λK)

∣∣∣∣∣
≤ 1

n

n∑
i=1

(
I
Xi∈Ck\Ĉk

+ I
Xi∈Ĉk\Ck

)
. (52)

To bound the sum of indicator functions, recall

Ck = {x | d(x, µk) ≤ min
��=k

d(x, µ�)}

and
Ĉk = {x | d(x, µ̂k) ≤ min

��=k
d(x, µ̂�)}

and note that the triangle inequality on the metric d gives, for any �,

|d(x, µ̂�) − d(x, µ�)| ≤ d(µ̂�, µ�) → 0

in probability. So, for any x and any �, d(x, µ̂�) → d(x, µ�) in probability
and in particular we have for any k

d(x, µ̂k) → d(x, µk) and min
��=k

d(x, µ̂k) → min
��=k

d(x, µ�)

in probability. Taken together this means that for all k, Ĉk → Ck , in the
sense of Eq. (10).

Now, let ε > 0 and define the upper and lower approximations to Ck ,

C+
k,ε =

{
x | d(x, µk) − ε ≤ min

��=k
d(x, µ�) + ε

}
and

C−
k,ε =

{
x | d(x, µk) + ε ≤ min

��=k
d(x, µ�) − ε

}

so that C−
k,ε ⊂ Ck ⊂ C+

k,ε . Therefore, letting

U = {Ĉk ⊂ C+
k,ε} and V = {Ĉk ⊃ C−

k,ε}

gives that P(U), P (V ) → 1 if n → ∞ and then ε → 0.
We can now bound Eq. (52) by noting

0 ≤ 1

n

n∑
i=1

I
Xi∈Ck\Ĉk

IV + 1

n

n∑
i=1

I
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IV c

+ 1
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Xi∈Ĉk\Ck

IU + 1

n

n∑
i=1

I
Xi∈Ĉk\Ck
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I
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k,ε
+ IV c + 1
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n∑
i=1

IXi∈Ck,ε\Ck
+ IUc .

So, taking the expectation on both sides gives that the expectation of Eq.
(49) is bounded from below by zero and from above by

P(X ∈ Ck \ C−
k,ε) + η1 + P(V c)

+ η2 + P(X ∈ C+
k,ε \ Ck) + η3 + P(Uc) + η4,

where η1, . . . , η4 > 0 give (upper) bounds on the convergence of the
indicator functions to their probabilities. As L1 convergence implies
convergence in probability, if we let n → ∞, and then let ε → ∞ then
we can let the ηj ’s go to zero to complete this part of the argument. That
is, with probability at least 1 − ξ , for pre-assigned ξ > 0, there is an N so
large that n > N ensures Eq. (49) has an upper bound that goes to zero,
that is, Eq. 49 → 0 in probability.

It remains to bound Eq. (50). Parallel to the sets Ck , Ĉk , C+
k,ε , and C−

k,ε

define the sets

Gk(X) =
{
λkd(X, µk) ≤ min

��=k
λ�d(X, µ�)

}
Ĝk(X) =

{
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}
G+

k,ε(X) =
{
λkd(X, µ̂k) − ε ≤ min

��=k
λ�(d(X, µ̂�) + ε)

}
G−

k,ε(X) =
{
λkd(X, µ̂k) + ε ≤ min

��=k
λ�(d(X, µ̂�) − ε)

}
.

Also, write

Wk,i,ε = {Xi ∈ Ck | |d(Xi, µ̂k) − d(Xi, µk)| < ε}

and let B(b) = {λK
1 | ∀k : 1/b ≤ λk ≤ b} so that as b → ∞ F(B(b)c)

→ 0.
Now, since all the summands are bounded by one, we have that Eq.

(50) is

0 ≤
∣∣∣∣∣ 1

n

n∑
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n
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∣∣∣ IB(b)dF(λK
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∫ (
I
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+ I
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)
× IB(b)dF(λK

1 ) + F(B(b)c)
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≤ 1
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+ 1
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(56)

Now, to see Eq. (53) → 0, note that

0 ≤ (53) ≤
∫

1

n

n∑
i=1

IXi∈Ck
IWk,i,ε

I
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+
k,ε

(Xi )\Gk(Xi )
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1 ).

So, taking expectations gives that

0 ≤ E

∫
1

n

n∑
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dF(λK

1 ).

For each fixed λK
1 the integrand (in parentheses) goes to zero and is

bounded by one. By the bounded convergence theorem, the asymptotic
upper bound for the expectation of Eq. (53) is zero as n → ∞ and ε → 0,
that is, Eq. (53) converges to zero in L1 which implies it converges to
zero in probability as well.

To see Eq. 54 → 0 we use a similar argument. Observe that

0 ≤ Eq.(54) ≤ 1

n

n∑
i=1

IWc
k,i,ε

.

As with Eq. (53), we obtain L1 convergence of the upper bound. Thus,

E
1

n

n∑
i=1

IWc
k,i,ε

= P(Wc
k,1,ε ) → 0,

as ε → 0. (Note that the Xi ’s are IID so we have arbitrarily chosen
i = 1 for the event in the probability for convenience.) This gives that
Eq. 54 → 0 in probability.

We can show Eq. 55 → 0 in probability by a technique similar to that
used for Eq. (53) and we can show the first term in Eq. (56) → 0 in
probability by a technique similar to that used for Eq. (54).

APPENDIX B. PROOF OF PROPOSITION 2

We can write

φk =
∫ ∏

��=k

I{λkdk≤λ�d�}f (λ�|θ)

 f (λk |θ)dλK

=
∫ ∞

1
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∫ ∞

1
θe−θ(λ�−1)
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0
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where δ(·) is the Dirac delta function, defined so that
∫ b

a
δ(x − t)dt = 1

if a ≤ x ≤ b and zero otherwise. This means,

Ia≤b =
∫ ∞

0
δ(b − a − t)dt and f (x) =

∫
f (t)δ(x − t)dt,

see ref. 27. So, by Fubini’s theorem we can interchange the order of
integration to integrate over the λ�’s first. We get that
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∫ ∞
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λk ≥ d�/dk
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f (λk |θ)dλk. (57)

Now, we break the domain of integration into subdomains so we can
use use the fact that many of the terms in the product are one for some
subdomains. If we sort the terms by increasing d�, we can handle the
conditional terms in the product by breaking the integration up into K + 1
possibly empty intervals, doing the integration separately on each interval.
The properties of ψ now give that the boundaries of these regions are
given by

Am =
dψ(m)/dk m ∈ {1, . . . , K}

∞ m = K + 1.

The intervals to integrate over are then

(0, A1] ∩ [1,∞), (A1, A2] ∩ [1,∞), . . . (AK, AK+1 = ∞] ∩ [1,∞).

However, as Am = dψ(m)/dk ≤ 1 for m < ψ−1(k), the first ψ−1(k) of
these intervals are void. Thus 57 becomes

φLE
k =

K∑
j=ψ−1(k)

∫ Ak+1

Ak

θe−θ(λj −1)

j∏
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dλk,

where we have used the fact that A
ψ−1(k)

= 1 to simplify the expression.
The last integral can now be easily evaluated. We get
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.
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If we collect similar terms and use the given definitions of C and D,
the last expression becomes

φLE
k = θ

dj

K∑
j=ψ−1(k)

Ck − Ck+1

Bk

.

As the ‘C terms’ may be quite close, we re-express φk to help get
better numerical stability by avoiding working with the difference of two
similar numbers. Thus,

φLE
k = θ
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+ · · · + CK
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)
, (58)

where the arguments of φLE
k , B, and C are understood. However, terms

Bk−1 and Bk are likely to be close together so for greater numerical
stability B−1

j−1 − B−1
j can be expressed as

1

Bk−1
− 1
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= 1
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−
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.

Putting this back into Eq. (58) gives:
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.

REFERENCES

[1] A. Ben-Hur, A. Elisseeff, and I. Guyon, A stability method
for discovering structure in clustered data, Pacif Symp
Biocomput 7 (2002), 6–17.

[2] C. Giurcaneanu, and I. Tabus, Cluster structure inference
based on clustering stability with applications to microarray
data analysis, EURASIP J Appl Signal Process 1 (2004),
64–80.

[3] O. Abul, A. Lo, R. Alhajj, F. Polat, and K. Barker, Cluster
validity analysis using subsampling, IEEE Int Conf Syst
Man Cyber 2 (2003), 1435–1440.

[4] T. Lange, V. Roth, M. Braun, and J. Buhmann, Stability-
based validation of clustering schemes, Neural Comp 16
(2004), 1299–1323.

[5] U. Moller, and D. Radke, A cluster validity approach based
on nearest-neighbor resampling, Proc 18th Int Conf Pattern
Recogn 1 (2006), 892–895.

[6] L. Hubert, and P. Arabie, Comparing partitions, J Classif 2
(1985), 193–218.

[7] M. Meila, Comparing clusterings: an information based
distance, J Multivariate Anal 98 (2007), 873–895.

[8] P. Rousseeuw, Silhouettes: a graphical aid to the interpreta-
tion and validation of cluster analysis, J Comput Appl Math
20 (1987), 53–65.

[9] R. Tibshirani, Estimating the number of clusters in a data set
via the gap statistic, J R Stat Soc Ser B 63 (2001), 411–423.

[10] T. Simpson, J. Armstrong, and A. Jarman, Merged consensus
clustering to assess and improve class discovery with
microarray data, BMC Bioinform 11 (2010), 590.

[11] S. Monti, P. Tamayo, J. Merisov, and T. Golub, Consensus
clustering: a resampling-based method for class discovery
and visualization of gene expression microarray data, Mach
Learn 52 (2003), 91–118.

[12] H. Wang, H. Shan, and A. Bannerjee, Bayesian cluster
ensembles, Stat Anal Data Mining 4 (2011), 54–70.

[13] S. Datta and S. Datta, Methods for evaluating clustering
algorithms for gene expression data using a reference set of
functional classes, BMC Bioinform 7 (2006), 397.

[14] Y. LeCun and C. Cortes, The MNIST database of handwrit-
ten digits, NEC Research Institute, 1998.

[15] W. Newey, and D. McFadden, Large sample estimation and
hypothesis testing, In Handbook of Econometrics, Vol IV, R.
Engle and D. McFadden, eds. Amsterdam, North Holland,
1994, 2111–2245.

[16] D. Pollard, Consistency of K-means clustering, Ann Stat 9
(1981), 135–140.

[17] S. Ray and B. Lindsay, The topography of multivariate
normal mixtures, Ann Stat 33 (2005), 2042–2065.

[18] H. Koepke, Bayesian Cluster Validation, Master’s Thesis,
Dept. of Computer Science, University of British Columbia,
2008.

[19] H.-P. Kriegel, P. Kroger, and A. Zimek, Clustering high-
dimensional data: a survey on subspace clustering, pattern-
based clustering, and correlation clustering, ACM Trans
Knowledge Disc Data 3 (2009), 1–58.

[20] W. Street, W. Wolberg, and O. Mangasarian, Nuclear fea-
ture extraction for breast tumor diagnosis, SPIE International
Symposium on Electronic Imaging: Science and Technol-
ogy, 1905, 1993, 861–870.

[21] A. Frank, and A. Asuncion, 2010. UCI Machine Learning
Repository. University of California, Irvine, School of
Information and Computer Science, http://archive.ics.uci.
edu/ml. Accessed January 3, 2013.

[22] K. Nakai and M. Kanehisa, Expert system for predicting
protein localization sites in gram-negative bacteria, Proteins
Struct Funct Bioinform 11 (1991), 95–110.

[23] H. Koepke and B. Clarke, On the limits of clustering in
high dimensions via cost functions, Stat Anal Data Mining
4 (2011), 30–53.

[24] F. Murtagh, The remarkable simplicity of very high
dimensional data: application to model-based clustering, J
Classif 26 (2011), 249–277.

[25] F. Murtagh, Ultrametric model of mind, I: review, p-Adic
Numbers Ultramet Anal Appl 4 (2012), 207–221.

[26] F. Murtagh, Ultrametric model of mind, II: application to
text content analysis, p-Adic Numbers Ultramet Anal Appl
4 (2012), 193–206.

[27] G. Arfken and H. Weber, Mathematical Methods for
Physicists, San Diego, Academic Press, 1995.

Statistical Analysis and Data Mining DOI:10.1002/sam

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

