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Abstract

We propose a decomposition of posterior variance somewhat in the spirit of an ANOVA
decomposition. Terms in this decomposition come in pairs. Given a single parametric model,
for instance, one term describes uncertainty arising because the parameter value is unknown
while the other describes uncertainty propagated via uncertainty about which prior distribution is
appropriate for the parameter. In the context of multiple candidate models and model-averaged
estimates, two additional terms emerge resulting in a four-term decomposition. In the context of
multiple spaces of models, six terms result. The value of the decomposition is twofold. First, it
yields a fuller accounting of uncertainty than methods which condition on data-driven choices of
models or model spaces. Second, it constitutes a novel approach to the study of prior in5uence
in Bayesian analysis.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Say a Bayesian analysis is to be undertaken in the face of uncertainty about the
correct parameter value within a parametric model, the correct model within a col-
lection or space of models, and the correct space within a collection of spaces. For
instance, in the context of estimating an unknown function the di8erent spaces might
correspond to di8erent types of basis functions, the di8erent models might correspond
to di8erent subsets of basis functions of a given type, and the di8erent parameter
values might correspond to di8erent coe9cients for the subset of basis functions. In
addition to uncertainty about the space, model and parameter themselves, there may be
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uncertainty about how best to weight, or assign priors to, these quantities. Fortunately
Bayes theorem provides a principled way to construct point estimates in the face of
these multiple uncertainties. Moreover, to assess the precision of such an estimate the
posterior standard deviation of the estimand can be reported as a standard error (SE).
This article focusses on a decomposition for such a standard error in the face of

multiple sources of uncertainty. Formally, we examine Var(�|D), the posterior variance
of a scalar estimand � given data D. There is no impediment to considering vector
estimands, but for ease of exposition we develop our ideas in the context of a scalar
estimand. The central idea is to give an ANOVA-like decomposition for this quantity,
so that the total SE, which we take to be the square-root of the posterior variance,
can be expressed as a root sum of squares. In particular, each individual component in
this decomposition is viewed as the SE due to a particular source of uncertainty. To
be more speciEc, our decomposition takes the form

SE2[tot] = Var(�|D)
= SE2[par] + SE2∗[par] + SE

2[mod] + SE2∗[mod]

+SE2[spc] + SE2∗[spc]; (1)

where par, mod, and spc refer to parameter, model and model space, respectively.
The operational meaning of the decomposition (1) is quite simple. With x being

either par, mod, or spc, SE[x] describes the a posteriori uncertainty associated with
the estimate  ̂ = E(�|D) that results from the value of x being unknown for a given
prior on x, while SE∗[x] describes the additional a posteriori uncertainty resulting from
uncertainty about which prior to assign to x. In this sense, SE∗[x] measures prior
in5uence, and can be regarded as being a “higher-order” term in relation to SE[x]. Of
course all six terms in (1) are not always needed. In the face of a single space of
models only the Erst four terms are manifested, and with a single model only the Erst
two terms are manifested.
There is considerable literature advocating Bayesian model averaging as a technique

for estimation in the face of competing models. Some key references include Draper
(1995), Kass and Raftery (1995), Clyde (1999), Hoeting et al. (1999), and Fernandez
et al. (2001). A theme in this literature is that Bayesian model averaging leads to
more realistic uncertainty assessments than methods which use the data to arrive at a
single model and then make uncertainty assessments as if that model were known to
be correct. Indeed, Draper, Kass and Raftery, and Hoeting et. al. give decompositions
which can be viewed as corresponding to some of the terms in (1). They do not,
however, include terms which re5ect uncertainty about appropriate priors. That is,
the SE∗ terms in (1) are entirely absent. Thus a key contribution of this article is
to develop these terms via a hierarchical prior speciEcation and appropriate use of
conditional means and expectations.
There are two major and transparent beneEts arising from the decomposition. First,

SE[tot] better re5ects the uncertainty associated with a point estimate by avoiding
unwarranted conditioning on a model or model space selected in a data-driven manner.
Moreover, the constituent terms give insight into which a priori uncertainties are more
or less responsible for the a posteriori uncertainty in the estimate.
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Second, the decomposition yields a novel approach to the assessment of prior in-
5uence in Bayesian analysis. Most formal schemes for such assessment are based on
extremes, examining, for instance, the range of a posterior quantity as the prior distri-
bution varies in a large class of distributions (see, for example, the volume edited by
Rios Insua and Ruggeri, 2000, and the references therein). This sort of approach, how-
ever, has not become popular in practice. This lack of appeal may derive in part from
incompatibility with the mainstream view that uncertainty assessments should be based
on typical or average error rather than worst-case error. In this regard our decompo-
sition of the posterior variance under a single model into SE[par] and SE∗[par] terms
may prove more appealing. Moreover, our approach is less computationally demanding
than an ‘extremal’ analysis of prior in5uence.
The remainder of the article is organized as follows. In Section 2 we lay out the

formal structure that deEnes the terms in (1), and then in Section 3 we suggest routes
to the hierarchical prior speciEcation demanded by this structure. Section 4 focusses
on computational issues. Sections 5–7 illustrate the use of the proposed partitioned
standard error in three practical examples. Finally, in Section 8 we revisit the main
motivating ideas behind the decomposition.

2. The basic decomposition

2.1. Forms of the terms

The decomposition of the form (1) that we propose is based on the standard identity
relating a variance to a conditional mean and a conditional variance. That is,

Var(V ) = E Var(V |W ) + Var E(V |W ): (2)

2.2. Parameter uncertainty

Say that a single parametric model is under consideration, with 
 and D denoting
the parameter vector and the observable data respectively. The prior distribution for

 is taken to depend on a hyperparameter �. We are interested in representing un-
certainty about which prior is appropriate, and therefore � itself is assigned a prior
distribution rather than a Exed value. Thus we are adopting the common hierarchical
Bayes approach to prior speciEcation. If we let �=�(
) denote the scalar estimand
and apply (2) conditional on D we obtain

Var(�|D) = E�|DVar(�|�;D) + Var�|DE(�|�;D) (3)

as a decomposition of the posterior variance for the estimand. The terms on the right
in (3) now include the uncertainty about the prior explicitly. In the Erst term, the inner
variance summarizes the a posteriori uncertainty about � for a given prior. The outer
expectation then averages this uncertainty across priors, with a weighting determined
by the posterior distribution of the hyperparameter � given the data. Thus the Erst
term re5ects the usual sense of statistical uncertainty that results from not knowing
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the correct parameter value, hence we set

SE2[par] = E�|DVar(�|�;D): (4)

In contrast the second term re5ects the across-prior variation in the estimator E(�|�;D),
the posterior mean for a given prior. Thus we set

SE2∗[par] = Var�|DE(�|�;D) (5)

to represent the a posteriori uncertainty in the estimator E(�|D) that results from being
uncertain about the appropriate choice of prior. Thus in the face of certainty about the
appropriate model, (4) and (5) provide a two-term partition for the posterior variance
of the estimand, corresponding to the Erst two terms in (1). To identify the other
terms in (1) in the presence of additional sources of uncertainty, we will apply (2)
repeatedly.

2.3. Parameter and model uncertainty

Now say that a priori there are multiple candidates for the appropriate model M .
For simplicity we will generically refer to the parameter vector within a given model
as 
, although of course the notation 
M would be more precise, as the parameter
vectors for di8erent models are logically distinct entities. Also, the estimand � should
be regarded as a function of both 
 and M , and must have a common interpretation
across models.
We assume the candidate models are assigned prior probabilities, encapsulated as a

hyperparameter . In analogy to the treatment of a prior within a model,  is assigned
a prior distribution rather than a Exed value. Application of (2) then yields

Var(�|D) = EM |DVar(�|M;D) + VarM |DE(�|M;D): (6)

The inner variance in the Erst term of (6) is simply the posterior variance of the
parameter of interest given a single model, and so can be decomposed exactly as per
(3). This yields

EM |DVar(�|M;D) = EM |DE�|M;DVar(�|�;M;D)

+EM |DVar�|M;DE(�|�;M;D)

and so we identify

SE2[par] = EM |DE�|M;DVar(�|�;M;D)

= EM;�|DVar(�|�;M;D) (7)

and

SE2∗[par] = EM |DVar�|M;DE(�|�;M;D): (8)

That is, these terms di8er from the analogous terms in Section 2.2 only via the addi-
tional outer expectation to average across competing models.
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To identify the third and fourth terms in (1), we decompose the second term in (6)
according to (2) to obtain

VarM |DE(�|M;D) = E|DVarM |;DE(�|M;D)

+Var|DEM |;DE(�|M;D):

The Erst term on the right represents the uncertainty arising from not knowing the cor-
rect model for a given prior distribution across models, while the second term represents
the variation in the model-averaged estimator EM |;DE(�|M;D) as the across-model
prior determined by  varies. Thus we identify

SE2[mod] = E|DVarM |;DE(�|M;D) (9)

and

SE2∗[mod] = Var|DEM |;DE(�|M;D)

= Var|DE(�|;D): (10)

Consequently (7)–(10) yield a four-term decomposition for the posterior variance of
the parameter of interest, corresponding to the Erst four terms in (1).
We emphasize that SE2[par] and SE2[mod] are slight extensions of the usual two

terms given for a posterior variance in the presence of model uncertainty but Exed
prior distributions (Draper, 1995; Kass and Raftery, 1995; Hoeting et al., 1999). In
particular, we can write (7) as

SE2[par] = EM |DE�|M;DVar(�|�;M;D):

For Exed within-model priors � is known so that no actual averaging takes place in
the inner expectation and we reduce back to the usual term. Similarly, for a Exed
across-model prior � is known, no actual averaging takes place in the expectation in
(9), and we reduce back to the usual term. Thus the present extension involves extra
averaging with respect to plausible values of the hyperparameters governing the priors
(� and ) in light of the data. Typically we expect this averaging to yield similar
values for SE[par] and SE[mod] as would be obtained by Exing the hyperparameters.

2.4. Parameter, model and model space uncertainty

It remains to see how the last two terms in (1) can arise. Operationally they are
manifested when we consider di8erent possibilities for the model space, which we
denote as S. Again for the sake of simplicity we retain M to denote a particular model
within a model space, although MS would be a more precise notation. We let � be a
hyperparameter which indexes the prior distribution on S, and as usual consider � to
itself have a prior distribution rather than a Exed value.
Using (2) we obtain

Var(�|D) = ES|DVar(�|S; D) + VarS|DE(�|S; D); (11)

in which the variance inside the Erst term is the same as the left-hand side of (6) for a
particular model space S. Since we already have a decomposition of (6) into the sum
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of (7)–(10), we simply average each term with respect to S|D in order to obtain the
analogous terms in the more general scenario. That is, we can determine the Erst four
terms in the general six-term decomposition (1).
To get the last two terms in (1), note that the argument of the variance in the second

term of (11) is E(�|S; D), the model-averaged estimator for a given model space S.
Applying (2) to this variance we obtain

VarS|DE(�|S; D) = E�|DVar{E(�|S; D)|�;D}+Var�|DE{E(�|S; D)|�;D}
= E�|DVar{E(�|S; D)|�;D}+Var�|DE(�|�;D): (12)

The Erst term on the right in (12) represents the uncertainty that results from not
knowing the correct model space for a given prior across the model spaces, and so
is taken to be SE[spc]. The second term examines the variation in the model and
model-space averaged estimator E(�|�;D) as the prior across models spaces varies,
and so is taken to be SE∗[spc]. Altogether then we have the six terms listed in (1),
applicable when there is uncertainty about both the values and priors for the parameter,
model and model space.
Note that our development is intensely hierarchical; from lowest level to highest level

we deal with parameter nested inside model nested inside model space. Point estimates
and SE components are computed via E and Var operators applied iteratively, with
inner terms corresponding to lower levels. In principle one could extend the approach
ad in6nitum, with an extra two terms arising at each level of nesting. In practical
terms, however, even one more iteration to “spaces of spaces” would likely be of little
interest.

3. Specifying extended priors

Here we describe relatively general approaches to the hierarchical speciEcation of
priors as demanded by the development in the previous section. In principle, there are
many ways to approach this speciEcation, and so we emphasize that other schemes
could be envisioned without straying from the framework of Section 2.

3.1. Prior within a model

In the case of the prior for a continuous parameter � within a given model, we
presume there is some Exed or “baseline” prior density f0(�) around which we want
to construct a hierarchical prior. We start by considering a one-to-one parameterization
from � to (�; �1; : : : ; �s), so that the components of � have independent Uniform(0,1)
distributions under the baseline prior. Typically, the probability integral transform can
be used to obtain a suitable reparameterization.
With the reparameterization in hand, we take the conditional distribution of

�|�1; : : : ; �s under the extended prior to be the same as under the baseline prior, but
specify the prior distribution of each �i in a hierarchical fashion. In particular we take
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Fig. 1. Default Prior Uncertainty. The left panel gives densities f(�|w) for a sample of w values using the
default speciEcation. The right panel gives corresponding densities after transformation to a standard normal
baseline.

f(�|!) = ∏s
i=1 f(�i|!i), where

f(�i|!i) =
r∑

j=1

!ijb(�i|�j; �j) (13)

with b(·|�; �) denoting a beta density with parameters � and �.
Since each !i is an r-dimensional probability vector, it is simple to complete the

hierarchical speciEcation by assigning independent Dirichlet(c1 R!) distributions to each
!i, where R! is a speciEed probability vector. Thus, we can view the distribution
of priors on �i as being centred at f(�i|!i = R!), with c1 controlling the degree of
concentration around this centre.
While there is much 5exibility with this speciEcation, we have found the choices

of r = 4, (�1; �1) = (1; 1), (�2; �2) = (2; 2), (�3; �3) = (1; 4), (�4; �4) = (4; 1), Rw =
(2=6; 2=6; 1=6; 1=6), and c1=4 to provide reasonable default settings. Note, in particular,
that f(�i|!i = R!) is the Uniform(0; 1) density. Thus the extended prior for each �i

is centred around the uniform distribution, and consequently the extended prior for
� is centred around the corresponding baseline prior. Fig. 1 gives plots of f(�i|!i)
for a sample of !i values, on the uniform scale and also transformed to the standard
normal scale. We see that the chosen settings induce substantial variation in the prior,
without giving weight to prior densities which are artiEcially rough. On the other hand,
of course, completely di8erent speciEcations can be used as the analyst sees Et. For
instance, one intuitive hierarchical extension of a baseline normal distribution involves
placing a prior over the degrees of freedom in the Student’s t distribution.
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3.2. Priors across models and model spaces

In analogy to the treatment of the parameter within a model, we must also extend
the prior distribution over models within a model space. There is a simple way to
accomplish this when there are a Enite number of models in the space. In particular,
let the k-dimensional probability vector ! denote the prior probabilities for the k models
in the space, and say != R! corresponds to the baseline prior probabilities. We extend
the prior by assigning a Dirichlet(c2 R!) distribution to !. As a default we suggest c2=4,
to be consistent with the default speciEcation for the magnitude of uncertainty about
the prior within a model.
Similarly, if " denotes the prior probabilities assigned to competing model spaces,

then we replace the baseline prior "= R" with a Dirichlet(c3 R") distribution for ". Again
for the sake of consistency we take c3 = 4 as a default value.

4. Computing the terms

Next we describe the three key algorithms used to compute the partitioned standard
errors. We emphasize that these algorithms are relatively simple additions to whatever
MCMC analysis is used under the baseline priors.

4.1. Posterior sampling under the extended prior

Algorithm 1 enables MCMC sampling from the posterior distribution of (�; !|d),
the posterior distribution under the extended prior in the context of a single model.
We use a standard “trick” for posterior analysis of mixture models: a vector of latent
variables $ is introduced, where $i indicates which component of the mixture gives
rise to �i as deEned in the extended prior. Thus we are interested in the joint posterior
distribution of (�; $; !|d), and we apply MCMC updates to (�|$; !; d), ($|�; !; d) and
(!|�; $; d) in turn.
To update (�|$; !; d) we simply tweak whatever updating schemes are used for �

under the baseline prior. In particular, we do not alter the scheme used to propose a
candidate value � ∗ given a current value �. We simply modify the Metropolis-Hasting
acceptance probability computed under the baseline prior by the multiplicative factor

s∏

i=1

b(�i(� ∗)|�$i ; �$i)
b(�i(�)|�$i ; �$i)

;

to account for the replacement of the uniform prior for �i with the appropriate mixture
component from (13).
The next updating step involves sampling from the discrete distribution of ($|�; !; d).

The conditional probability that $i takes the value j is proportional to b(�i(�)|�j; �j)×
!ij, and so upon normalization independent updates to each component of $ are easily
implemented.
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The Enal update involves sampling from (!|�; $; d). This is also very simple, since
the conditional distribution of (!i|�; $ = j; d) is Dirichlet(c1 R! + %j), where %j is the
unit vector with one as the jth entry and zero elsewhere.
As a general comment we End this algorithm to be quite e9cient under the de-

fault mixture speciEcation. In particular, the four beta densities comprising the mix-
ture (13) are relatively 5at with respect to one another, and this facilitates good
MCMC mixing. We also emphasize that there is very little e8ort required to imple-
ment this algorithm beyond what is required for MCMC sampling under the baseline
prior.

4.2. Computing the decomposition for a given model

Algorithm 2 is designed to compute E�|DVar(�|�;D) and Var�|DE(�|�;D) in the
context of a single model. We do this by drawing two MCMC samples. The Erst,
� (1; j), j = 1; : : : ; t, is drawn from the posterior distribution resulting from the baseline
prior. The second, (� (2; j); !(2; j)), j = 1; : : : ; t is drawn from the extended prior using
Algorithm 1. For a given ! we can use importance sampling to obtain

Ê(!) =

∑t
j=1  (1; j){f(� (1; j)|!)=f0(� (1; j))}
∑t

j=1 {f(� (1; j)|!)=f0(� (1; j))}
as an estimate of E(�|�=!;D). Thus, the sample variance of Ê(!(2;1)); : : : ; Ê(!(2; t)) is
a Monte Carlo estimate of Var�|DE(�|�;D). Moreover, by interchanging the mean and
variance operations we can similarly obtain a Monte Carlo estimate of E�|DVar(�|�;D).
Again, the relative 5atness of the component densities in (13) under the default spec-
iEcation makes this algorithm quite e9cient.

4.3. Computing the across-model terms

While the Erst two algorithms yield the requisite within-model computations,
Algorithm 3 yields the across-model quantities for a given space. Given the marginal
density of the data under the various models, f(d|M = i), i = 1; : : : ; k, it is trivial to
sample from M |!; d since

Pr(M = i|!; d) = f(d|M = i)!i∑k
j=1 f(d|M = j)!j

:

It is also simple to sample from |M = i; d ∼ Dirichlet(c2 R!+ %i), and thus a MCMC
sample from M; !|D can be obtained. Moreover, since the quantities of interest
VarM |;DE(�|M;D) and EM |;DVar(�|M;D) are readily computed for a given value of
, this MCMC sample yields Monte Carlo estimates of the terms (9) and (10) without
the added complexity of the second algorithm.
In this algorithm we assume that f(d|m) can be computed. In some problems this

is a di9cult task (see, for instance, DiCiccio et al., 1997, Han and Carlin, 2001), al-
though the challenge may be the same for both the baseline and extended priors within
models. In the examples of Sections 6 and 7, however, we use the approximation
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f(y|m) ≈ f0(y|m), as there are closed-form expressions for the marginal density of the
data under the baseline prior but not under the extended prior. We expect this approxi-
mation to be quite reasonable, as a slight “5attening” of the prior within each model will
not have a great in5uence on the relative a posteriori weighting of the models.
We also note that Algorithm 3 adapts trivially to compute the requisite across-space

quantities if needed.

5. Example: case-control analysis with imprecise exposure assessment

In this section we apply our techniques in a problem investigated by Gustafson
et al. (2001). Even though it involves only a single model, our approach to uncertainty
analysis may be particularly germane in this example as the estimand is a function
of both identiEable and nonidentiEable parameters. Consequently the extent to which
inferences will depend on the prior is not clear.
Consider case-control analysis with a single binary exposure variable. Let r0 and r1

be the prevalences of this exposure amongst the control and case populations, and say
that the log odds-ratio  =log[{r1=(1−r1)}={r0=(1−r0)}] is the parameter of interest. To
allow for possible nondi8erential misclassiEcation in the exposure assessment, deEne
the sensitivity p to be the probability of correct classiEcation for a subject who is
actually exposed, and the sensitivity q to be the probability of correct classiEcation for
a subject who is actually unexposed. Thus � = (r0; r1; p; q) comprises the parameter
vector in this problem. Gustafson et al. (2001) discuss Bayesian inference about  in
this setting at length.
In realistic applications the classiEcation probabilities p and q may be known roughly

but not exactly. For instance, consider the following scenario. The investigator believes
the exposure assessment scheme is very good, but is not entirely convinced that it
is perfect. Consequently he assigns independent Beta(29; 1) distributions to p and q
as a baseline prior. This distribution has a monotone increasing density with Enite
mode at 1, corresponding to the investigator’s best guess that the classiEcation scheme
is perfect. However, the distribution assigns roughly 0:95 probability to the interval
(0.9,1), and so the possibility of slight misclassiEcation is not ruled out. On the other
hand, little information about the prevalences r0 and r1 is available, so these parameters
are assigned uniform priors.
In the context of this scenario, consider two Ectitious data sets. In Scenario A,

10/200 controls and 20/200 are classiEed as exposed. In Scenario B 250/5000 controls
and 500/5000 cases are classiEed as exposed. Thus Scenario B involves the same
proportions of apparent exposure as Scenario A, but with 25 times more data.
We consider uncertainty about the priors on p and q by applying the probability

integral transform and taking �1=F0(p) and �2=F0(q) in the formation of an extended
prior. The MCMC analysis for a baseline prior suggested by Gustafson et al. (2001) is
easy adapted to the present context via Algorithms 1 and 2 as described in Section 4.
A posterior sample size of t=5000 after 1000 burn-in iterations su9ces to give stable
Monte Carlo calculation of the point estimate �̂ = E(�|D) and the corresponding
partitioned SE, as reported in Table 1.
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Table 1
Point estimates and partitioned standard errors in Example 1

�̂ SE[tot] SE[par] SE∗[par]

A 1.11 0.81 0.81 0.06
B 1.21 0.65 0.64 0.10

It is seen that SE[tot] and SE[par] decrease only slightly in Scenario B relative to
Scenario A, whereas in regular models we would expect to see about a Evefold decrease
in SE due to a 25-fold increase in the amount of data. Moreover, SE∗[par] is actually
larger, and appreciable relative to SE[par], at the larger sample size. In contrast, with
regular models we expect the prior to become less important as the sample size grows.
Both of these quantitative Endings agree with the qualitative Endings of Gustafson
et al. (2001) concerning the e8ect of nonidentiEability in this problem. These authors,
however, did not have tools with which to quantify the relative role of the prior as in
Table 1. Given that the nonidentiEability in this problem is unavoidable, the partition
of SE[tot] gives valuable insight into the relative import of the data and prior.

6. Example: linear regression with uncertainty about predictors and interactions

Ein-Dor and Feldmesser (1987) provide data on the characteristics and benchmark
performance of n= 209 central processing units (CPUs). Following these authors, we
consider four predictors of performance: A, the machine cycle time (in nanoseconds),
B, the average main memory size (in kilobytes), C, the cache memory size (in kilo-
bytes), and D, the average number of input channels. To reduce skewness, square-root
transformations are applied to the response and the four predictors. Then the response
and the four predictors are linearly rescaled to have mean zero and variance one, to
aid in model interpretation.
We consider the k = 210 = 1024 models obtained by either including or excluding

each of the four predictors and each of the six possible pairwise interaction terms.
For a particular model m involving pm main e8ect and interaction terms, our baseline
assumptions are

Y |�m; 02 ∼ N(Xm�; 02I);

�m|02 ∼ N(0; 02I);

p(02)˙ 0−2;

where Xm is the n × (pm + 1) design matrix for model m. The choice of prior for
�m can be viewed as a ‘unit-information’ prior as it leads to (X ′

mXm + I)−1X ′
my as

the model-speciEc posterior mean for �m, where the predictor standardization implies
that each diagonal element of X ′

mXm is n− 1. The baseline prior for m is taken to be
uniform over the k di8erent models. Note that standard linear model analysis yields a
closed-form expression for f0(d|m), the marginal density of the data for a given model.
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Fig. 2. The eight models with appreciable posterior probability in the regression example of Section 6.
For each model  ̂ plus/minus one SE[par] is indicated. Each model contains all the main e8ects, and is
therefore identiEed by which of the interaction terms (AB, AC, AD, BC, BD, CD) are present. The posterior
probability of each model is given at the bottom of the Egure.

To apply our analysis we use the default settings of Section 3, with �i = 3(�i=0) for
i=1; : : : ; (pm+1) under model m. Thus we are considering uncertainty about the prior
for the regression coe9cients but ignoring uncertainty about the improper prior for
the variance term 02. The estimand is taken as  = �1 + · · · + �pm+1, which can be
interpreted as the estimated performance, in terms of SD above or below average, of
a CPU which is one SD above average in each characteristic.
Following the idea of Occam’s window as advocated by Hoeting et al. (1999),

we restrict attention to the eight models having baseline posterior probability of at
least exp(−3) ≈ 1=20 times that of the highest posterior probability model. After
re-normalizing, the posterior model probabilities range from 0.43 down to 0.04. Using
Algorithms 1 and 2, each of these models is subjected to the extended prior analysis
using Monte Carlo sample sizes of t = 5000 after 1000 burn-in iterations. Again, this
was found to be su9cient to yield stable values for the model-speciEc estimates and
partitioned standard errors. Fig. 2 gives the posterior mean  ̂ and SE[par] under each of
the eight models. Note that  ̂ does exhibit considerable variation across the competing
models. The SE∗[par] terms are small in relation to SE[par], with the ratio of the
former to the latter ranging from 0.068 to 0.083 across the eight models. Given that
the decomposition is additive on the squared scale, this implies that SE[tot] ≈ SE[par]
for each model. Next we implement the across-model analysis, again using a Monte
Carlo sample size of t = 5000. Aggregating the model-speciEc SE[par] and SE∗[par]
terms as dictated in Section 2 yields the following overall uncertainty analysis. The
point estimate is E(�|D) = 0:27, with SE[tot] = 0:18. The components of the SE are
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SE[par]=0:15, SE∗[par]=0:01, SE[mod]=0:08, and SE∗[mod]=0:04. Thus while the
within-model uncertainty about the parameter is the largest contributor to the overall
uncertainty, both SE[mod] and SE∗[mod], which might typically be ignored, are of
appreciable size in relation to SE[par].

7. Example: multiple uncertainties in Bayesian curve-(tting

As an example involving a full six-term partitioned SE, consider Bayesian curve-
Etting for the data from Silverman (1985) on acceleration versus time in a simulated
motorcycle crash. The data, collected at n= 133 irregularly-spaced timepoints, appear
in Fig. 3. We focus on estimating three quantities: the minimum acceleration, the
maximum acceleration, and the acceleration at the last timepoint.
We follow the Bayesian approach to smoothing advocated by Smith and Kohn

(1996). For a Exed set of knots z1; : : : ; zm, consider the d+m+1 functions 1; x; : : : ; xd;
(x − z1)d+; : : : ; (x − zm)d+. These constitute a basis for the regression splines of order d
on the knots. Smith and Kohn suggest the use of variable selection methods, so that
some of the basis functions (i.e. some of the knots, given the choice of basis) may be
removed on the grounds that they are not contributing su9ciently to the Et. Thus for
a given choice of d we have a model space containing 2d+m+1 models.
In the present example we consider both quadratic (d=2) and cubic (d=3) regression

splines, and thus have two competing model spaces. For illustrative purposes we use
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Fig. 3. The motorcycle data of Example 3, with the best quadratic-model Et (solid line) and the best
cubic-model Et (dashed line) superimposed.
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Fig. 4. Partitioned standard errors for the two model spaces considered in the curve-Etting example of Section
7. The left panel gives SE[tot], SE[par], SE∗[par], SE[mod] and SE∗[mod] for the three estimands under
the quadratic spline model space. The right panel gives the same quantities for the cubic spline model space.

m= 9 equally spaced knots when d= 2 and m= 8 equally-spaced knots when d= 3,
in order to have a manageably sized space of 212 models in each case.
For a given model m we use the baseline speciEcation

Y |�m; 02 ∼ N(Xm�m; 02I);

�m|02 ∼ N(0; 02Tm);

p(02)˙ 0−2;

using Tm = n(X ′
mXm)−1 which corresponds to a “unit-information” version of Zellner’s

g-prior (Zellner, 1986, Fernandez et al., 2001). Fits from the highest posterior proba-
bility model in each space are superimposed on Fig. 3.
Again to keep the analysis manageable we restrict to models with baseline posterior

probability no less than exp(−3) ≈ 1=20 times that of the highest posterior probability
model. This yields 50 models, 23 of which are from the quadratic model space and
27 of which are from the cubic model space.
To perform the within-model uncertainty analysis we obtain the components of � by

applying the standard normal distribution function to the components of 0−1T−1=2
m �m,

and then use the default settings from Section 3. Applying this to the models under
consideration via Algorithms 1 and 2 and then averaging over models within each space
via Algorithm 3 leads to posterior means of  ̂ min = −122:3,  ̂ max = 36:7,  ̂ last = 10:9
for the quadratic spline model space, and  ̂ min = −123:4,  ̂ max = 31:0,  ̂ last = 7:0 for
the cubic spline model space. For each space SE[tot] and the four constituent terms
are displayed in Fig. 4. Aggregating across spaces, again with the help of Algorithm 3,



ARTICLE IN PRESS
P. Gustafson, B. Clarke / Journal of Statistical Planning and Inference ( ) – 15

tot

par

par*

mod

mod*

spc

spc*

min. max. last

S
E

10

8

6

4

2

0

estimand

Fig. 5. Full partitioned standard errors for the curve-Etting example of Section 7. Each of SE[tot], SE[par],
SE∗[par], SE[mod], SE∗[mod], SE[spc] and SE∗[spc] is given for each estimand.

yields posterior means  ̂ min =−122:9,  ̂ max = 33:6,  ̂ last = 8:8. The corresponding SE
terms are given in Fig. 5. Perhaps the overarching comment is that while SE[par] is the
largest component in the partitioned SE for each estimand, it does not dwarf the other
components which might typically be ignored. For instance, in estimating the acceler-
ation at the last timepoint, uncertainty about the model within the space (i.e. which
knots should be used) is almost as large as uncertainty about the parameter within
the model (i.e. what coe9cients should be used). And in estimating the maximum
acceleration, SE[spc] is quite large in relation to SE[par], indicating substantial un-
certainty about whether quadratic or cubic splines are most appropriate. Some of the
uncertainties about priors are also non-negligible, with SE∗[mod] when estimating the
acceleration at the last timepoint and SE∗[spc] when estimating the maximum acceler-
ation being cases in point.

8. Discussion

Throughout the examples of the previous three section, each SE[x] term is larger
than its corresponding SE∗[x] term. Of course this is to be expected; the uncertainty
that derives from not knowing x is larger than the uncertainty that derives from not
knowing how to weight x a priori. Moreover, in Example 3 which involves the full
six-term decomposition, SE[par]¿SE[mod]¿SE[spc]. We suggest that this ordering
would be typical, as the progression from parameter to model to model space moves
us away from the “heart” of the inferential process, that is, the exact relationship
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between possible outcomes and parameter values. Nonetheless, the examples do caution
us against ignoring model or model space uncertainty.
We view simplicity, both computational and conceptual, as a strength of our ap-

proach. As discussed in Section 4, the computational burden over and above that of
the baseline analysis is quite modest. On the other hand, the conceptual simplicity of
our decomposition (1) derives from the existence of a joint distribution on all relevant
quantities, with respect to which uncertainties can be assessed. We could not use con-
ditional expectation and variance to our advantage without this underlying structure. In
this regard, the Bayes paradigm and the desire to decompose or partition uncertainty
go hand in hand.
A point which deserves elaboration is the remark in Section 2.3 that an estimand

must have a common interpretation across models, or more generally across models
and spaces of models. One could apply the decomposition to estimands without such
an interpretation, but this would be quite meaningless. As an example, say that the
di8erent models correspond to di8erent transformations of the response variable in
a regresssion context. For instance, di8erent powers in the Box-Cox transformation
could be considered. One could apply the decomposition with the estimand taken to
be the regression coe9cient for one of the regressors. However, estimates of this
coe9cient would tend to vary greatly across models, simply because the coe9cient has
a di8erent interpretation under each model. Thus a high value of SE[mod] would be
almost guaranteed. In the examples of Sections 6 and 7 the estimands are Etted values at
particular values of the X variables. Since a Etted value has a common interpretation
across models as a predicted Y value for the given X values, the decomposition is
readily interpreted.
Of course the goal of accounting for various sources of uncertainty as completely

as possible when making inferential statements is not unique to Bayesian analysis.
It is well known in general that standard errors and conEdence intervals determined
conditionally on a model that has been chosen from a model space on empirical grounds
are too small. Surprisingly, however, the literature on solutions to this problem is
somewhat sparse (see, for instance, Aitkin, 1974; Buckland et al., 1997; Regal and
Hook, 1991; Zhang, 1992).
In fact, to some extent we may be able to ascribe non-Bayesian interpretations

and analogs to some of the terms in our decomposition. In particular, SE[mod] is
essentially a weighted sum of squared deviations between model-speciEc estimates
and a model-averaged estimate, and hence variants of it using weights derived in
non-Bayesian ways are readily obtained. For instance, Buckland et al. (1997) use AIC
values to obtain model weights which di8er from Bayes weights as used here. While
this may not have the conceptual appeal of the Bayes approach, it would typically in-
volve easier computations. Moreover, we can make a rough analogy between changing
the prior distribution over competing models within the Bayes paradigm and changing
the model selection principle (MSP) or paradigm used to choose between models. That
is to say a non-Bayes approach to weighting the models can be “back-transformed”
to a prior distribution (albeit data-dependent) over the models. Thus SE∗[mod] can be
viewed as a rough surrogate for capturing uncertainty due to choice of MSP. There
is a considerable literature to suggest that depending on one’s statistical goals and
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settings di8erent MSPs are optimal, and combining several model selection principle
can outperform any Exed choice, much as averaging models may outperform usage of
a Exed model.
One interesting extension to our decomposition would be an examination of the

uncertainty due to imperfections in the data. For instance, many analyses of data must
deal with censored responses, missing covariates, or imprecisely measured covariates.
While most reported standard errors incorporate the extra uncertainty caused by these
imperfections, it is not always easy to understand how much of the uncertainty is
attributable to these sources. In principle a decomposition of posterior variance in the
spirit of (1) could determine how much of the posterior variability would remain if
the data were measured perfectly. Since the typical route to Bayes analysis in such
problems involves MCMC on an extended parameter space which includes the true but
unobserved measurements, such a development may indeed be practical.
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