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Abstract

Suppose the true density generating data z = (z1,...,2,) is in a parametric family
denoted v™ (z" | 61), where 6 is a real parameter, but that " (™ |6;) is not known in detail.
One may try to model the data by using a different conditional distribution ¢" (z" | 61) =
[T gi (z; | 61), which assumes independence even when this is not valid. Here we take
the ¢;’s to be the marginals from " since this is an optimal choice. The independence
density ¢" can be used to obtain a ¢"-based MLE, éq, and a ¢"-based posterior, w,. We
examine the performance of éq and wg under " in two situations. The first situation assumes
no extra structure on v", only that it satisfies some laws of large numbers. The second
situation assumes that v™ may be realized as a mixture over nuisance parameters of some
underlying higher dimensional conditional independence model. Under our conditions, none
of the parameters in this conditional independence model need “fade out” as n increases to
get consistency of estimators based on ¢".

Assessing convergence in ™ (z" |6;), we find that w, is consistent and asymptotically
normal in both cases, with asymptotic variance unchanged from what one would expect if
the data were generated by an independence model. The asymptotic distribution of éq need
not be normal nor be scaled by the Fisher information. Consequently, posterior inference
based on the product of marginals is different from MLE-type inference derived from the
product of marginals. This analysis is distinct from the usual “estimation in the presence of
nuisance parameters” analysis in that we are interested in estimators based on the product

of marginals ¢”, not estimators based on the true dependent likelihood /™.
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1 Introduction and motivations

It is widely believed that the two paradigms, likelihood based inference and posterior based
inference, are philosophically different but asymptotically the same except in pathological
cases. Here we examine two estimators, one based on maximizing a likelihood and the
other based on a posterior density, which are derived from an independence model applied
to dependent data. When we examine their performance in the true (dependence) model
substantial asymptotic differences emerge even when typical parametric families are used.
Specifically, the asymptotic variance of the likelihood based estimator may be inflated—
although it may be estimated—and the posterior estimator fails to reflect the dependence
present in the true model.

An important aspect of the results here is that for certain estimation procedures nuisance
parameters—which empiricists will assert are always present—need not disappear asymptot-
ically. Indeed, empiricists would argue that we never know the true density, and even if we
can regard it as a member of a parametric family nuisance parameters will characterize the
lack of independence and lack of identicality which cannot be assumed to attenuate even
with extremely large sample sizes. Modeling all of these dependencies and nonidenticalities
is fundamentally impossible so we are always using approximations which we hope are ade-
quate. The present methods are an attempt to take these legitimate concerns into account:
we estimate on the basis of an independence density (known to be wrong) but evaluate its
performance in the true density, perhaps involving persistent dependency, persistent lack of
identicality and persistent nuisance parameters. We obtain general results suggesting the
typical behavior of our procedures and give examples which indicate their feasibility.

Our formulation of this problem is motivated by the statistical theory of standardized
educational tests. In trying to measure a construct such as social adjustment, job satisfaction,
school math achievement, it is common to make a set of n observations on each individual.
Often, the trait is then quantified as a latent (unobservable) random variable ©;. A numerical
value is assigned to each observation used to measure ©i, giving rise to random variables
X" = (X1,...,Xn). [Replications of (©1,X1,...,X,) across individuals are considered to

be i.i.d.; and we will denote outcomes of random variables with the corresponding lower case
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letter.]

The “ideal” model often proposed for such data is a mixture

m(e") = [ ¢ (" |61) dF(6y) (1)

where F' is the distribution of ©1, and ¢"(z"|6,) factors as
n
¢" (z" |01) = [] ai(il6n). (2)
i=1

The goal is to infer each individual’s §; from his 2", based on the right-hand side of (2).
Conditional independence models such as (2) are often assumed even though they are

only approximately valid. Suppose the correct formulation is

m(a") = [v" (" |61) dF(61). ©

where the conditional model for X™ given 6; is some dependent v™ (" | 6;) whose structure
is not known in detail. We give conditions under which asymptotic inference (as n — oo)
based on the product of one-dimensional marginals where ¢;(z1|0;1) = [ N"(z"|01)dz; ...
dzi_1 dziyi ... dz,, may still be successful.

There are two ways in which ™ may arise in applications. In the first, nuisance parameters
prevent v" from factoring. If we regard ©; as the first coordinate in a vector valued parameter

0¢ = (01, 0,,...,0,), the “ideal” density in (2) should be replaced by
n
p" (2" 107) =TT ps (=i 101). (4)
i=1
Hence,
v (@ 100 = [ 9" (2" 167) ar(edien). (5)

Typically d is so large that we cannot simply estimate éf and then “throw away” ég More-
over, unidimensional models are strongly favored in psychometrics applications. Indeed, the
practitioner will sometimes concede that (4) is correct, but continue to use a wrong unidimen-
sional model of the form (2) on the grounds that it is not far wrong; for several perspectives
on this see Drasgow and Parsons (1983), Harrison (1986), Reckase (1979), Reckase, Acker-
man and Carlson (1988), Wang (1986, 1987), and Yen (1984). Results similar to ours, but
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assuming (2) is the correct likelihood, have been produced by many authors, e.g. recently
Chang (1991) in the educational measurement setting.

Alternatively the dependent model v™ (™ | #;) may also arise when meaningful secondary
traits ©F fail to exist. The correct model is (3) in which ™ does not factor and does not
arise by mixing out nuisance parameters as in (5). Reiser (1989) suggests that the section of
the NIMH Diagnostic Interview Schedule measuring major depressive disorder may fall into
this case.

These two cases require distinct analyses, both of which are presented in this paper. In
both cases we generate estimators from ¢", the conditional independence likelihood closest
to the correct dependence model v", and assess their behavior in v™. There is some evidence
that this “best possible” case is approximately achieved in certain applications (cf. Wang,
1987). We also restrict our attention to cases in which ©; or 6, respectively, have continuous
distributions w(f;) or w(#¢). On the other hand, " may be discrete or continuous.

For inference based on ¢, it is more straightforward to first suppress consideration of the
“full model” p" (:JNU” |Qf) Stout (1987, 1990) has developed a criterion for binary data z"
called essential independence which identifies 6; as the “dominant latent trait”. This may be

interpreted more generally as imposing a law of large numbers (LLN’s) on ",

. 1 &
nll)rgo\/ar (% ;al(Xl) 91) = 0, (6)

for all bounded sequences of functions {a;(-) : i = 1,...,00}. Condition (6) was applied by

Junker (1991) in the educational measurement setting to the analysis of maximum likelihood
estimators for 6 based on ¢" when in fact v™ (2" |6,) is dependent. Equation (6) imposes
conditions only on the dependent likelihoods v™ (2" | 6;).

The estimators we study are derived from ¢", which is a misspecification of v™. We
establish, both with and without assuming the existence of a full model p”, consistency
and asymptotic distribution theory for éq which maximizes ¢”, and for the posterior density
wq(01|z™) constructed as though ¢" were the correct likelihood. Even though obtaining
consistency is straightforward, the asymptotic distribution of éq is a mixture of normals,
whereas the posterior distribution wy(6;|2™) continues to be normal with the “independence-

based” location and scale parameters.
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In a model for paragraph comprehension tests we explicitly obtain the asymptotic distri-
butions of éq and wg; in this case, éq continues to be normal with an inflated variance which
can be estimated from the data. The results here all have obvious extensions to the case in
which 6, is really of fixed dimension d > 1.

In the i.i.d. case Berk (1966) characterized the asymptotic carrier of the posterior dis-
tribution under a wrong-model analysis. Yamada (1976) extended this characterization to
more general dependence structures. Here, we focus on situations in which the correct model
involves some form of dependence while the incorrect model assumes independence.

In Section 2, making assumptions only on v™ we show that the ¢"-based MLE éq is v"-
consistent for #;. Also, we show w,(6;|z") centered at 8, and scaled according to the ¢"-based
empirical Fisher information is asymptotically normal. Our techniques for the posterior are
based on Laplace’s method. A consequence is that asymptotic posterior normality in the
wrong model is insensitive to the true dependence structure of the data. Indeed, Chen
(1985) shows that the success or failure of Laplace’s method in for posterior normality is
an analytic property of the model, not the stochastic structure of the data. Our conditions
overlap considerably with those used in Kass, Tierney and Kadane (1990) to define “Laplace-
regularity”.

In Section 3 we establish v"-consistency of éq without LLN assumptions on ", and show
that 6, converges in distribution to a mixture of normals. However, wq(6;]z"), the formal
posterior of O given 2", is still asymptotically normal, with the same ¢"-based centering
and scaling as before.

In Section 4 we consider some further implications of our results. In Appendix A we show
that the product of marginals ¢" is the optimal approximation to the dependent likelihood

v"™. In Appendix B, proofs are sketched for the major results of the paper.

2 Direct analysis of ¢" under v"

In this section, only the dependent measure v™ (- | 61), its one-dimensional marginals g; (x; | 61),
and the product measure ¢" (z" |01) = [~ q; (z; | 61) are used. The law governing X" is at

all times v™ (z" | 61); but the likelihood we will analyze is ¢" (z" | 61).
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2.1 Consistency of the wrong-model MLE éq

Let 6, be the MLE from ¢" (X" |6;). Define

Lu(6) = log " (X" |6) = 3 _log ai(X:il6) (7)
i=1
and
D, (61,6) = (L (61) ~ La(0)] = -3 log qq((XTHZ}))

i=1
Under v, E[D,(61,0)|6:] = (1/n)D (gf,
For each t € Qg,, define Bs(t) = {0 € Qo, : |0 —t| < 6}. In the present context, the key

qg‘) where D is the Kullback-Leibler distance.

assumptions for a Wald-style proof of consistency can be stated as follows.

Assumption C1. For each 0; and ¢t # 6, there exists ¢(t) > 0, such that

lim P[Dn(gl,t) > C(t)| 91] =1.

n—00

Assumption C2. For all ¢t # 6; and all £ > 0, there exists § > 0 such that
91] 1

Assumption C3. There exist ca > 0, such that for all § > 0 and A sufficiently large

nli_)ngloP leeilggf(t) D, (t,0) > —¢

(depending on 6), lim inf,_, s P [ian,M Dy (61,0) > cA\ 91] >1-4.
Under C1, C2 and C3 the wrong model MLE éq is consistent:

Proposition 2.1 Under Assumptions C1 through C3, for all € > 0 and all 6 > 0, there
exists v = y(€,0) > 0 such that

61| >21-9 (8)

.. . 1
lim inf P l"%g:{"ﬂ —[Ln(61) = La(0)] > v

~ n n
and hence the formal MLE 0, % 0 as n— oo (where “S7 denotes convergence in V" -

probability).
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The proof is based on the usual Wald compactness argument. It is useful to identify more
readily interpretable sufficient conditions for C1 and C2. Essentially, we require a LLN for

D,,(61,60), whose summands need not be bounded.

Lemma 2.1 Suppose

(a) For each t # 0y there exists 5(t) > 0 such that liminf,,_,.(1/n)D (qg”1

q?) > B(t);

(b) Asn — oo, Dp(01,t) — (1/n)D (qgl‘

q,?) 0.
Then Assumption C1 holds.

Condition (a) can be seen to be a kind of minimum information or identifiability condition.

In Section 2.4 we will see that for typical binary response data, (6) implies (b).

Lemma 2.2 Suppose that, for all t # 01 there exists §; > 0 such that
(a) ¥V &>030 € (0,0), such that liminf, . infyc g ;) E[Dn(t,0)|601] > —¢;

(b) ¥ €>036€(0,6) such that lim,, o0 P [supge s, |Da(t,0) = E[Da(t,0)[ 61]| < €] 0]
= 1.
Then Assumption C2 holds.
Note that E[Dy(t,0)[61] = (1/n)[D(qp |lgg) — D(qp,llat’)] — 0 as 6 — t; hence (a) is a

locally uniform one-sided version of this continuity condition on the map 6 — gy. Similarly,

(b) is a locally uniform version of the WLLN D,,(¢,0) — E[Dy(t,0)| 01] 20

2.2 The asymptotic distribution of éq

For inference we must know the asymptotic distribution of \/n (9,] —61)/oy, for some appro-

priate scale term ¢,,. Taylor expansion gives

Vi (L = 0,) = Y=""2 (9)

where L, (8,) = (1/n)dL,(61)/061, and J,(6;) = —(1/n)d?log¢"(z"|0,)/06,> for some
01 €{0: |0 —6:] <|f, — 6:]}. Assumptions such as those in Section 2.3 (see especially As-

sumption PN1 and Assumption PN3 below) guarantee that J,,(6;) will behave well; the main
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problem is the behavior of v/n f;(@l) under v™. General conditions for asymptotic normality
for dependent sums have been established by Dvoretzky (1972), Tosifescu and Theodorescu
(1969), Cox and Grimmett (1984), and Newman and Wright (1982). Applications to item

response models are considered by Junker (1988, 1991).

2.3 Posterior asymptotics

We now turn to the possibility of basing inference for 6y on the formal posterior distribution

q" (2" [61) w(bh)

Wy (61 | :g”) = ffooo q" (gn |6) w(0)do

(10)

where w(6;) is the prior density of 8;. Of course the true posterior distribution is

v (2" | 01) w(6y)
S0 v™ (2™ | 0) w(B) do

ooV

wy (01 | 2") =

The main result, Theorem 2.1, is that w,((61 — 6,)/on|z") is asymptotically normal, in the

sense of Walker (1969). We make the following regularity assumptions.

Assumption PN1. Let I;(0,) = E [(0log¢;(X;|01)/061)?|61] and I,,(0) = (1/n) X7 L(0).

Then there exist 0 < €y, < My, < oo such that ey, < Tn(91) < My,, for all large n.

Assumption PN2. [9%¢;(x|0,)/06,dz = 0.

Assumption PN3. M i(z,01) = supycp, (g, 0% log ¢i(x16)/06*> — 9* logqi(x|91)/8912‘ is

bounded uniformly in z and 4, for small € > 0, ; and for M, (e,61) = (1/n) X7 M ;(X;,01),
lim lim sup & | M, e, 01)‘ 0] =0.

€e—=0 n—oo

Assumption PN4. The prior density w(f) is positive and continuous throughout a small

neighborhood of 6.

Theorem 2.1 Assume (6) and the conclusion of Proposition 2.1. Under the additional as-
sumptions PN1 through PN/,

on = {~LL(0,))72 > 0.
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Then, for all a < b,
éq"‘bo—n n
L w01 X d0 % 2(0) - @(a) (1)
0

gt+aon

as n — oo, where ®(-) is the the standard normal c.d.f.

Proof. Under the stated assumptions it is straightforward to show that for 6 = 9q+r(01 —éq),

where r € [0, 1], and B((6;) as in Assumption PN3, then for all £ > 0 there exists € sufficiently

small that
1 _
lim P sup L0 +In(01)] <&|01| = 1. 12
L . (0;) + In(61) (12)
In particular,
(1/n) L (6,) + Tn(61) 2 0. (13)

For the proof of the Theorem, break up the integral in (11) as follows:

[l g (X710)(60)do

/éq-l-ban (9|X”)d9 0y +aon
w, =
bgraon JZ50 4 (X |0)w(0)dO
Syt g (X" |0)w(0)d0
UBE(Ql) +fBE(91)C] q"(X"0)w(6)db
L+

with € to be determined below. The three integrals can be dealt with by modifications of the
techniques found in Walker (1969), leading to
Fact 1: For all £ > 0, there exists € small enough that

Tim P |1 /{ong" (X"|0,)} — (27)2w(01)] < | 01] = 1.
Fact 2: For each fixed € > 0,
L/{ong"(X"(05)} % 0.
Fact 3: For all £ > 0,

lim P |13/ {oaa" (X"18,)} — (2m)%(62)[@(b) - @(a)]| < |6:] = 1.0
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The LLN assumption (6) only enters into the proofs of Proposition 2.1 and the subsidiary
results (12) and (13). Thus we could replace (6) with the subsidiary results.
A straightforward modification gives consistency of the posterior mean and higher poste-

rior moments. For example, we have

Corollary 2.1 In addition to the hypotheses of the Theorem 2.1, suppose
o0
| e (X 1wty de < o (14)
— 00

with v™-probability tending to 1 as n — co. Then E, [0 X"] s 0, under v".

2.4 Examples from item response theory

Item response theory, IRT, seeks to estimate an examinee’s latent trait #; from his responses
to n individual items (questions) on a standardized multiple-choice questionnaire. Suppose
each observable variable z; has k; values &;1, ..., &, where the k;’s are uniformly bounded. In
practice the model often used to analyze the data is the product of marginals [T;-; ¢; (z; | 61),
where g; (z; |01) = H?;l Pz-j(Hl)Yii, and Yjj = 1{x,—¢,;}- In many settings, the curves P;j(01)
are considered well-enough estimated that they are taken to be known. In large-scale educa-
tional testing, for example, Wang (1986, 1987) argues that when the full model p" (2" |01, 62)
applies, the popular response curve fitting program LOGIST produces stable estimates of
qgi(z;|T), where 7 is an appropriate one-dimensional projection of (6, 6s).

Stout’s notions of essential independence and essential unidimensionality (Stout, 1987,
1990; Junker, 1988, 1991) provide conditions under which neglecting nuisance factors is rea-
sonable. Traditional analysis of educational tests is based on averages of item response scores

Ap = (1/n) YT A;, where A; = Z] 1 @i;Yij, subject to

(a) E|M<00' —M <a; <ap<...<ap <M, Vi; and

15
(b) liminf— Za,k a;; > 0. (15)

n—oo n,

Assumption (6) applies directly to such scores, and directly generalizes Stout’s definition
of strong essential independence for binary data (Definition 3.5, Stout, 1990). Note also
that, because the X;’s are bounded, (6) implies (b) of Lemma 2.1, as long as the P;;(6;)
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are bounded away from 0 and 1. Since estimation of 6; is the goal, some sort of minimum

information condition is needed. Let A, (61) = E [Zn

91] . In the educational testing context
it is natural to assume that, for every set of item scores satisfying (15) and every 6, there is

an interval B = Bg(#;) and an € > 0 such that

lim inf An(t) = An(01)
n—00 t— 01

> e, VtEB, t+# 0. (16)

This generalizes Stout’s “local asymptotic discrimination,” LAD, condition for binary items

(Stout, 1990, Definition 3.8).

Proposition 2.2 Suppose that EI and LAD hold, and that the response curves P;j satisfy

For each ¢, 0 < inf P;;(t) < sup P;;(t) < 1; (17)
i irj
P;;(t) is continuous at each ¢, uniformly in ¢ and j (18)

and suppose Assumption C3 holds. Then the “wrong model MLE” éq 1s V™ -consistent for 61,

as n — o0.

The proof is a routine verification of the conditions of Lemmas 2.1 and 2.2. The inequality

D (fllg) = (1/4) [[|f(€) — g(€)| d€]? (Csiszar, 1975) is helpful in verifying (a) of Lemma 2.1.

Example 2.1 Assumption C3 may often be verified directly. Consider the case of binary
response data, in which k; = 2, &1 = 0 and &2 = 1. A commonly used model for the response

curves is
1

1 + exp{—ai(Ol — bl)},
and 1311(91) =1- Plg(gl) Then Dn(01,0) = (]_/’)’L) E? ti(gl) — ti(0), where

Pp(01) =c; + (1 —¢;)

. a;(60—b;) . a;(0—b;)
ti(0) = X; logL —log |1+ e
1—yg¢ 1—g¢
Hence
) 0,if X; =1,

lim —¢;(0) =

f=00 00, if X; =0;

lim —t(0) = —loge (1 —¢)' ™%,

0——o0
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and we see that Assumption C3 holds as long as P[X; = 1Vi|6,] = P[X; = 0Vi|0;] = 0; this
in turn follows from (6) and (17), which has a natural interpretation in terms of the a;’s, b;’s

and ¢;’s. O

Proposition 2.3 Suppose, in addition to the assumptions of Proposition 2.2, that
2

90 log P;;(#) is bounded pointwise in @, uniformly in ¢ and j. (19)

Then, in the sense of (11),

On

r {@1—@

@}ﬂN@u

The main part of the proof, which is omitted, is a routine verification of Assumption PN1
and Assumption PN3. In the following example the asymptotic MLE and posterior distri-
butions are different; this is an explicit case in which interval estimates for #; based on the

q"-likelihood are wider than intervals based on the ¢"-posterior.

Example 2.2 Consider binary responses X, X9, X3, ..., having the same response curve
Pi2(01) = 61 (so that P[X; =1 |6;1] = 61). Suppose that the items are arranged in successive
groups of g, items as Xy, Xo, ..., Xg,; Xg,+1, Xg,4+2, ..., Xag,; etc., such that different
groups of g, items are independent of one another, given €, and items within a single group

are positively correlated, given 8y, and with

c if X; and X; are in the same group,
Corr (XZ, Xj|91) =

0 if not,
for some fixed ¢ € (0,1]. This v might model a paragraph comprehension test in which
several paragraphs are presented and g, questions are asked for each paragraph. Here, 60
represents a trait common to all the items, which we might wish to think of as reading
comprehension; and the nonzero correlations are induced by specific knowledge about the

subject matter of the paragraph at hand, for example. This situation is also considered by

Stout (1990), Junker (1991) and Wainer and Lewis (1990).
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The conditions of Proposition 2.3 are easily verified, for ; € (0,1). Hence, in the sense

of (11),

cq{ﬁu
0,(1 —6y)

}ﬂNum

where the standard error 1/6,(1 — 6,) is calculated directly from L (6,) as in the statement
of Theorem 2.1, using éq = Tp.

One may also easily verify the conditions of Proposition 2.2. Also, because of the block-
dependent structure, it is trivial to obtain an asymptotic normality result for é = X,; we

see that

Vn (8, — 61) ~ AN(0,0?)

where 02 = 0;(1 — 01)[1 + c¢(go — 1)] is somewhat inflated over the anticipated asymptotic
variance 61 (1—6;) under ¢". Thus the ¢"-based MLE is consistent and asymptotically normal,

but has a larger asymptotic variance. O

It remains to show that this inflated variance can be estimated. Observe that the marginal
distributions of X; given #; are known and T, = %E? X; is a consistent estimator for 6,

(under vy, ); more generally, T;, might be any consistent estimator of ;. We are interested in

estimating
Var (vn(T,, — 01)|01) = —Z Var (X;|61)
=1
+= Z (XiX;0h) — E(Xi|61)E(X;]61)]
" i
= 0,(1-6) —(n—1)6?+— ZE X; X,|61).

#J

Since #; can be estimated by T, we show how to estimate the product moments on the right
hand side.
Recall that we have m i.i.d. observations of the vector (Xi,...,X,); m represents the

number of examinees and n represents the test length. For the k* examinee, k = 1,...,m
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n
> xp;. Let h > 0 and consider the kernel regression estimator
i=1

we have a value of T}, tj,, = <

U t—tin
(1/mh)kZ_:IK( ) X ki Xj

pij(t, h) = T
(1/mh) 3 K (=)

k=1
for £(X;X;]01), where K is a bounded kernel [for instance a N(0,1) density] and ¢ is a
dummy variable.

The intuition is as follows. For fixed n, if m increases, the denominator should converge
to wp(61), the density of T),. Then, as n increases, the consistency of T}, should imply that
wn(01) converges to w(f1). For the denominator, again look at what happens when n is
held fixed. As m increases the numerator goes to [ z;x;f (i, z;,tn)dz;dz; where f is the
joint density for its arguments and the integral is with respect to counting measure. As n
increases, the consistency of T, implies this integral converges to [ z;z;f(zi, z;,601)dz;dz;.
Consequently, the ratio of the two limits gives F(X;X;[0;).

Verifying this intuition requires ensuring that the discrete-valued T}, converges to a ran-
dom variable with a continuous density and obtaining appropriate rates on n,m — oo and
h — 0. This can be done; indeed, it can be shown that the numerator and denomina-
tor converge to their respective limits in an L? sense so that their ratio, u;;(t,h) converges
in probability to F(X;X;|0;). The main sufficient conditions for this to be true are that
mh? — oo, that T}, is asymptotically unbiased for all #; and that Var T}, tends to zero.

The important implication of this line of reasoning is that the inflated variance charac-

terizing the asymptotic distribution of the ¢-MLE can be estimated.

3 Analysis of ¢" under v" using the full model p"

In many settings it is natural to assume that there exists a “full model” p™(z"|6¢) from which
"™ and ¢" can be derived. If we simply apply the results of Section 2 to the full model case,
we see that, under finite moment conditions, the LLN assumptions on »" imply that the

effect of the nuisance parameters 64 in the full model p” ( |Q‘f) disappears asymptotically.
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Consider (6) in this context, which asserts that the left side of the identity

Var lEn:a(X) 61) =Var | E lEn:a'(X') 04116, ) + E | Var lEn:a'(X') 0416
niZIZ 3 1) = niZIZ i) Y1 1 niZIZ i) Y1 1

tends to zero as n — oo, for bounded a;(-). Also, the second term on the right will tend to

zero by the weak law of large numbers for p™. Hence the remaining term tends to zero, from

91] -1

d d . . d .
) - ’ .
As a result, for w (Q2 | 91) almost every 09, the first moment is asymptotically free of #5. This

which we may conclude, for every € > 0,

LS (B [ax016] - Blasx) 0}
=1

< €

n—00

lim P[

argument extends to higher moments as well.
However in the development below we do not make LLN assumptions on vy, . In particular
this means that in some cases the nuisance parameter(s) 64 need not “fade away” to produce

meaningful results.

3.1 Consistency of éq

Our first result is an extension of Proposition 2.1 in the context of p. With the notation
exactly as in Section 2.1 we assume:

Assumption C1'. For all ¢ # 6y, there exists c(t) = c(t; #) > 0 such that

lim P[Dn(el,t) > c(t)|Qf] =1.

n—oo

Assumption C2'. For all t # 01, and all £ > 0, there exists § > 0 such that

Qf] 1

n—00 0eBs(t)

lim P[ inf D,(t,0) > —¢

Assumption C3'. There exist ca = ca(6¢) > 0, such that for all § > 0 and A sufficiently

large (depending on ), liminf, , P [inf|9‘>A D, (01,6) > cA‘ Qﬂ >1-9.
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Proposition 3.1 Under Assumption C1' through Assumption C&, for alle > 0 and all § > 0

there exists v > 0 such that

liminf P| inf D,(601,0) >~y

o1
n— 00 0¢B.(601) ~

>1- 4. (20)

The proof, which is omitted, is identical to that of Proposition 2.1, except that all prob-
abilities and expectations are conditional on ¢, not ;. Note that laws of large numbers
may be expected to hold in the independence model p™; arguments about the plausibility
of Assumption C1’ and C2' reduce to verifying the appropriate moment conditions (cf. e.g.
Theorem 5.2.3 of Chung, 1974). Also, the ¢(¢) in Assumption C1’ and the ca in Assump-
tion C3' depend on #¢. This suggests what kind of uniformity argument to make, to obtain

v™-consistency from p™-consistency. Example 3.1 illustrates Corollary 3.1.

Corollary 3.1 Suppose that, for any compact set K C supp w(69]61), infyi e c(t) > 0 and
2

infyq_-ca > 0. Then for all € and all 6, there exists vy such that
2

liminf P| inf D,(01,0) >~

n—00 0¢B.(601)

0] >1-6.

Proof. Let §' be so small and K so large that w(K|0;)(1 — ¢') > 1 — 6. Then apply Proposi-

tion 3.1 and use Fatou’s lemma to obtain a lower bound on the left hand side. O

3.2 Asymptotic distribution of éq

For the discussion of asymptotic distribution properties of the éq, it is convenient to consider
again the Taylor expression (9).
Assumption AN1'. Let v,(0¢) = VnE [f;(ﬁﬂ‘gf], and assume there exist functions

02(6¢) > 0 such that
Vo ADEEALII
d ~
on(67)

(0,1)

under p" ( |Q‘f)

Assumption AN2'.  There exists ¢ = €(f]) > 0 such that M.;(z,6;) = SUPge . (,)
|0% log q;(x;|0)/00% — 0% log qi(x]01)/06,?| is dominated by some p"-integrable function, uni-
formly in i, and for M, (e,01) = (1/n) X0, M, ;(X;,01), lime_yo limsup,,_,, F [Mn(e, 91)‘ Qf]
=0.
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Assumption AN3'. 4, “s 0, under v" (- 161).
Note that, since p" is a product measure, Assumption AN1’ is a fairly mild and natural

assumption requiring only, say, the Lindeberg-Feller conditions on the summands of fln(Ol).

Proposition 3.2 Let z, be the standard normal cutoff, « = ®(z,) for Z ~ N(0,1), and

assume Assumption ANI' through Assumption ANS. Then

1. For dll t,

nlggop[\/g(el — éq) < t‘ 91:| -F [@ (tjn(el) — ’Yn(elv@g)>

On (91’ @g)

91] ~o.

2. For all o € (0,1), and any “centering” and “scale” terms b(01) and c(6,),

— B B o -

i [ VA0 =000) 11T (acl0) = (a(01,08) = viTb6)) |,
c(6y) on(01,0%)

Vo (Ln0) = B [T00|6f]) 7,0 - a0 N

on (@) G

and Part 1 follows using Assumptions AN1’, AN2' and AN3'. Part 2 follows in a similar

< Za

n— 00

Proof. To see Part 1, note that from (9)

P

P[\/ﬁ(Gl—éq)gt‘Hl] —F

fashion, using Assumptions AN1' and AN3'. O

Part 1 shows the distortion of the usual confidence intervals based on éq. Part 2 shows
what happens if we try to force centering and scaling terms which depend only on 8y. If we
insist on having a “standard” asymptotic normality result, we are faced with investigating

the stability and fixed points of integral operators, as n — oo:

L Zadn(01) = (01, ©9)
a = nll)rgoE [@( o (61,69 2 > 91]
o = s [o (el VRN,
n—00 Un(917@g)

It is suggestive to consider the easy case in which we may interchange limit and expectation.

For example, in Part 2, we would require

o — lim Zac(0) = O (@) = Vb(61))

n—oo On (Q(li)

for all z4; clearly this requires c(6)/0, () — 1 and \/ﬁ(E[fIn(Ol)|Qﬂ —b(01))/on(0%) — 0.
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3.3 Posterior asymptotics

Although Proposition 3.2 implies likelihood-based inference is complicated, the situation for
posterior inference is more straightforward. As in Section 2.3, the principal ingredients are
consistency of éq for 6, and the approximation of the asymptotic information function with
the empirical Fisher information.

Assumption PN1'. For each #{, there exists 0 < ¢ < M < oo such that

e < liminfT,(01;09) < limsupT,,(01;05) < M,

n—o0

where T (61;04) = —E [ (1/n) Ly (61)] 6]
Assumption PN2'. The weak law of large numbers holds for p" ( |Q‘1i) In particular, we
assume that (1/n)L!"(01) + I1,,(01;09) 0.
Assumption PN3'.  There exists ¢ = €(0¢) > 0 such that M;(z,0;) = SUPyesp, (9,)
|02 log q;(2:|0)/06% — 0% log q;(x;]61)/6,?| is dominated by some p"-integrable function, uni-
formly in 4, and for M,,(¢,61) = (1/n) 37— Mci(X;,601), lime_yglimsup,_, o E [Mn(e, 91)‘ Qf]
=0.
Assumption PN4'. The prior density w(f) is positive and continuous throughout a small
neighborhood of 6.

Since p" is a product measure, satisfying Assumption PN2’ really just amounts to verifying
appropriate moment conditions. Also, note that the “information” here is only computed
one way; there is no analogue to Assumption PN2. Finally, Assumption PN3’ is the same

continuity condition as Assumption AN2’.

Theorem 3.1 Assume the conclusion of Proposition 3.1, and suppose Assumption PNI'

through Assumption PNJ' hold. Let
on = {=Ln(0)}* > 0.

Then, for all a < b,
éq+b(rn n
L w01 X7 d0 S @ (0) - @) 1)
(7]

gt+aon

under v™ (- |01), as n — oo.
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Proof. We modify the proof of Theorem 2.1 to give convergence under p”, and then integrate
over A% to obtain (21). First we observe analogs to the subsidiary results (12) and (13) in
Theorem 2.1: Let 0; = éq +r(0; — éq), r € [0,1]; then for all £ > 0, there exists € > 0 such
that

OO rgzeB(01) T

hmP{ sup |1L;;(0;‘)+Tn(01;@%)|<fgf}=1;

In particular,

(1/n) L2 (B,) + Tn(61;0%) B 0.

The main idea for the proof of Theorem 3.1 is to modify Facts 1, 2, 3 so as to assert

convergence under P[-|0{], obtaining

éq +bon n
L 01X a0 % (b) - a() (22)

gt+aon

pointwise in ¢, and then integrate over 8¢ to obtain (21). O

Asymptotic distribution theory under v" involves mixing over #¢ and this means that
there is no well-defined Fisher information resulting from p™—unless it too is free of §¢. The
proof of the subsidiary results in Theorem 2.1 breaks down if one tries to use the expected
Fisher information under ¢", T,,(61) = E[—(1/n)L"(01)] 61]; and, although we can replace oy,
with of, = T,,(01;60%) /2, the result is of little practical value since the scaling would depend

—-1/2

on @%. Thus scaling with the observed Fisher information o, = {—L"(8,)} is essentially

required.

3.4 Two normal-family examples

Example 3.1 below treats a multivariate normal p” in which the location is a nuisance pa-
rameter, and Example 3.2 treats a multivariate normal p” in which the scale is a nuisance
parameter. In Example 3.1 we identify a rate at which the nuisance parameter must attenu-
ate if asymptotic normality is to hold for éq. In Example 3.2, p™ continues to depend on 85 as
n — 00; hence the requirement that dependence on Qg attenuate as n — oo is not necessary.
We have kept the examples simple to allow closed-form calculation of integrals over Qg, and

other needed quantities. More complicated examples require numerical computation.
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Example 3.1 Suppose L(X;|01,02) = N(02/«;,01), for fixed constants «; # 0, independent
of one another, and £L(©3|61) = N(0,6;). It is easy to verify that £(X;]61) = N (0, (a?+1)/a?),
that

1 1 1 1 &, a?+1 1 & of

~log ¢"(z"[t) = —=log 2 — = 1 —— log - X2
o g (2"]t) = =5 log2m — 5 log 0y 271,; B2 2n91Z ’

2 I3
o = 1+ aj

and that consequently éq =(1/n) YT a?X2/(1+a?). Let @, = (1/n) X7 a2 /(1 +a?) and 3,
=1-—ap; then E [éq‘ 91,92] = @pb1 + B,00%. Tf lim, o0 |a;| = 00, then éq Py 0, and hence

éq v 0,. It is also easy to verify that

1. ¢"(z"01) 1 t 1.1 1 2
Dy(61,1) = —log————=Slog — + (- — )0, =
n(61,%) n 8 qr(zn)t) 2 08 01 2(t 91) 1

1 t 1.6,
Slog — 4 =(2 1
logg T35 1

as n — 0o. Analysis of the function f(u) = logu+ (1/u— 1) shows that the assumptions C1’,
C2', C3' and the uniformity assumptions in Corollary 3.1 are satisfied. Hence, Proposition 3.1
and Corollary 3.1 hold also.

For the asymptotic distribution of éq, we may calculate in Assumption AN1’ that

B 18 a2 1 40,0,2\1"*
_ T 2 _ |2 Z i 1v2
Un(91’92) [Va‘r( n(91)|917 92)] |"fL ~ (1 4 a?) (2912 + 4914041/2 ’

which tends to c(6;) = 1/v/26; as n — co. To obtain an asymptotic normality result following
Proposition 3.2 for 8, we also need to identify a function b(6;) such that VI(E[L, (61|61, 62]—
b(01))/on(01,62) — 0. Such a function b(6;) can be identified in this case only by assuming
the stronger rate \/n 3, — 0.

Turning to the asymptotic posterior distribution, note that

N N R
1(61;60) = E {—gLn(Ol) 01,02} = 9—13]_«7[9(,‘01,02]
1 1. (.67
T ™y
Lo b
20,

as n — 0o, and

1 _ 1 . _ n
5L2(91) + 1,(01;02) = 93 0, — @n01 + B,0:%)] % 0,
1
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asn — oo. From these it is easy to verify Assumptions PN1’ and PN2'. For Assumption PN3',
we note that

-2

t t—2
2t3

O 213

b

917921 = (@01 + B,02%) sup
teBg(al)

FE [Mn(é, 91)‘ 91,92] =F [ sup
teB;s(01)

from which Assumption PN3’ follows. In this case the scale of the asymptotic posterior
distribution is the same as for the asymptotic distribution of éq (however, the rate v/n 3,, — 0

is not required). O

Example 3.2 Let £(X;|61,62) be i.i.d. N(01,652), so that the common marginal density
under p” is p(z|01,02) = (62/V27) exp{—02(z — 6,)?/2} for 6; € R, §; € IRT, and assume
that w(02|01) = cexp{—05/2}1(y,>1}, where c is the normalizing constant. Then ¢(x]0;) =

e*%[(xfal)ul]/w[l + (z — 01)?]. For future reference, we note that

0 B (x—61)2+3
(92 (x — 91)4 +3
1 ) = - .
69 ap 2 108 q( | 1) [(:E — 91)2 + 1]2

Since E[X;|01,02] = 6; and a LLN holds under p" we see that X, is consistent for §; under

p™, and hence also under ¢" by integrating out 5. Using the Taylor expansion

9 — 6 - Xi—a 2 3
K 4

where £ is between éq and 61, we see that the denominator is bounded away from zero, and
the numerator is sandwiched between X,, — 61 and 3(X,, — 6;); hence by consistency of X,
éq is also consistent for 6.

Instead of verifying Assumptions C1’' through C3’, we will establish the conclusion of

Proposition 3.1 directly. Note that

n(01,0) = —Z{log )2 +1] — log[(X; — 61)* + 1]}

+—Z{ )2 +1] = [(X; — 61)? + 1]}

By the LLN under p™, the second sum converges to %(91 — 0)2. Similarly, the first sum

converges to its expected value under p”, which achieves the minimum value of zero when
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f = 0. The convexity condition of Proposition 3.1 now follows by bounding in probability
arguments. Note that by Proposition 3.2, the asymptotic distribution of éq under ™ must
be a variance mixture of normals.

Using the boundedness and uniform continuity of (¢* + 3)/(? + 1)2, it is easy to verify
Assumptions AN1’ through AN3’, and hence under Assumption PN4' it follows that w, will

be asymptotically normal, centered at éq and scaled by —L’,;(HA,]). O

4 Discussion

When assumptions cannot safely be made about the dependence structure of a model a
natural approach is to regard the data as coming from a distribution ™ (z" | #;) conditioned
only on the parameter of interest, but otherwise unspecified. Because v may be difficult to
work with, practitioners may be led to use the product of marginals ¢" (z" | 61). This is an
approximation, and is the best possible in two senses discussed in Appendix A.

We have identified two physically distinct categories of problems in which asymptotic
inference based on the product of marginals can proceed: Section 2 treats the case in which
laws of large numbers (LLN’s) are imposed upon v™; Section 3 treats the case in which v™ can
be embedded, as a mixture over nuisance parameters Qg, in a larger conditional independence
model p" (g” |Qf) = [T pi (:Jc, |Qf) In this second case, the LLN’s which hold naturally
under p” are enough. In both settings we have obtained the consistency of the Bayesian
oriented ¢"-based posterior distribution wy(6;|z™), and of the frequentist oriented ¢"-based
MLE 6, both under the true density ™ (™ | ;).

We have also examined the limiting distribution of the ¢ based posterior and of the ¢"
based MLE. The ¢" posterior wy is centered at éq and scaled by o,, where 0,2 is the ¢" based
empirical Fisher information. By contrast, the asymptotic distribution of the ¢"-based MLE
cannot be determined without further assumptions on v™ or, if it is assumed to exist, p™.

When v" is represented as the mixture over nuisance parameters of p”, imposing an LLN
on v has the effect of forcing the dependence of p" ( |Qf) on the nuisance parameters 64
to attenuate as n — oco. Example 3.1 illustrates this. The attenuation is not necessary for

useful asymptotic results; see Example 3.2. However, without sufficiently fast attenuation of
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the nuisance parameters, the asymptotic distribution of éq is a mixture of normals which is
difficult to analyze.

In analyzing the asymptotic behavior of the posterior distribution (in any model) we may
distinguish between concentration of the posterior around a centering value and convergence
of the centering value to some limit, as n increases. This distinction might be ignored under
conventional assumptions, where both convergences occur at the rate 1/4/n. In our situation
this distinction cannot be ignored: the dependency in the data is not reflected in the inference
model ¢", so that convergence of éq to #1 may be slower than the rate of concentration of
the posterior about éq. This may not matter to a Bayesian, for whom the notion of a “true
value” of #; is not meaningful. But to a frequentist, for whom the posterior distribution is
another way to generate inferences about the true value of 6y, this distinction is important
since concentration around éq is no longer as informative about the reliability of inference
for #;. Even the Bayesian must be careful, since the usual interpretation of the posterior,
in the sense of updating belief, cannot be used since we do not assume the data comes from
q" (z" | 61).

The disparity between MLE-based and posterior-based asymptotic inference can be il-
lustrated in a practical setting. In Example 2.2 we give a situation in educational testing
which involves explicit dependence among the response variables. In this setting, asymptotic
éq—based confidence intervals can be calculated: They are wider than the highest posterior
density intervals based on the asymptotic normality of w,. An important aspect of this
example is that the inflation of the standard error of the MLE can be estimated by the non-
parametric technique outlined there. Since the width of the posterior intervals are in general
the same in the dependent case and in the independent case the limit of w, has nothing to
do with the true dependence structure. As a result, if the dependence figures at all in the
asymptotic behavior of the posterior it will be seen in the rate of convergence to normality,
rather than the rate of concentration about éq.

The fact is that practitioners, Bayesian or frequentist, typically reduce to the independent
if not i.i.d. case, for both the derivation of estimators and the evaluation of their performance.

In this context, Bayesian and frequentist methods usually give results which are equivalent in
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practice. Here, like practitioners, we have based estimation on a product of marginals. Then
we have evaluated the performance of the estimators in terms of the density reflecting the true
dependent structure of the data. The discrepancy between the Bayes and frequentist results
is important when the model for inference is different from the model of data generation.

In a hypothetical Bayesian-Frequentist exchange, the Bayesian would argue that failing
to model the dependence omits important features of the problem and he wouldn’t do it. Of
course, neither would the frequentist, if it could be avoided. The frequentist would go on to
assert that if you are going to omit important features of the problem, it’s better to be a
frequentist: You lose less since sensitivity to the omitted features (dependence) is retained.

Finally, we suggest that the greater sensitivity of éq to dependence in data may be useful,
even to a committed Bayesian, as a good starting place for diagnostic checks of conditional
independence: for example, inflated standard errors would indicate positive dependence in

v™ that might make it worthwhile to model " directly; see Junker (1991) in this regard.
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Appendix A: The Best Independence Model

A.1 An estimation interpretation

As discussed in Section 1, we have based our inference for #; on an independent likelihood
" (z™ 101) = [1i=q i (z;i |61), even though v™ (2" |0) is the correct likelihood. When p"
is assumed to exist, we would like ™ to be as close as possible to p”. When p" cannot be
assumed to exist, we would like 7" to be as close as possible to v™.

Recall the Kullback-Leibler distance D (f||g) = E[log(f(X™)/g(X"™))], where X" has
density f(-). See, for example, Section 4 of Bahadur (1971) for basic properties of D (-|-).

Fixed parameters will appear as subscripts.

Proposition A.1 Dy, (v"||r") is minimized over r™ by taking r’™ = ¢".

Indeed, following Aitchison (1975), we note that

n
Dy, (") = Do, (v"114") + D Do, (aill i) ,
i=1

which is minimized by taking r; = ¢; in each term of the summation at right.
The quantity Ry, (p",r") =F [D(Ql of) ("] r”)‘ 91] , can be interpreted as a ‘pointwise’
Bayes risk in estimating p" ( | Q‘f) by ™ (- |61). We have the following.

Proposition A.2 The Bayes risk Ry, (p",r") is also minimized over r™ by taking r™ = ¢".
To see this, note that

n
R91 (pn7 ’rn) = Z R91 (pl’ Iri) .
i=1
Decomposing the summands gives two nonnegative terms from which it can be seen that the
sum is minimized by taking r; = g;.
A.2 A Stein’s Lemma interpretation

The basic data analyzed with (1) and (2) consists of i.i.d. vectors (011, XT),...,(O1m, X}),

from m individuals, where the subvectors X7 are actually observed, one for each individual,
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and the ©1; are latent variables. Let I' be a collection of densities of the form 7(6;)ry, where
rg, = " (2" |01) is any fixed independence density, and 7 is any marginal density for 6;.

Consider the simple versus composite hypothesis test
Hy: w(01)vy, versus K:7(01)rg, €.

Let ¢ be the indicator function for a rejection region for Hy, which we denote by Af,.

Stein’s test for Hy vs. an element of H; has the acceptance region

" (X7101)w(615)
AStein TG € = { <e€,p,

2 8T,
for Hy, where D' = D(w||T) + [ D(vg ||ry )w(01)df:, see Chernoff (1956). Tt is well known

— D

that Stein’s test has probability of type Il error satisfying
—m(D'+ —m(D' —
1 - oL} P40 < (AStem - ) < mlD'=0),

As a result, if we choose € so that Stein’s test is level «, and we let Awgg be the acceptance
region for some other level « test ¢, then from the proof of Proposition 3.C in Clarke and

Barron (1990) we can deduce that

Prog (Agrry ) 2 (1= 20)e " Pryy. (AStein - ) : (23)
Now replace the 1 —2a by 1 — 2« — n, where 7 is small enough that (23) remains nontrivial.

Proposition A.3 Assume there is an n > 0 so that (23) holds uniformly over I then the

Stein test based on Agiein wa s near asymptotically minimaz in the sense that
st (b i P (4,) < 108 P Ui g ) =0 (20

Thus, for some choices of I', the Stein test for Ho versus Hy with 7 = w and rg = qy , is

near asymptotically minimaz.

Recall that a minimax test achieves max,, minﬂ«g1 er PT,«gl (Afp) = 1—min, maxrp er PT’"5L1 (Ayp);
typically such tests exist (e.g. Lehmann, 1959, p. 341). Let D = [ D(vg ||qp )w(61)d01; evi-

dently —D = lim,_, o+ log Pr, (Agtein ol .)- To establish (24), it is enough to examine
0y’

— log m(;n Tg;aéc Prpp 5 (Ay).
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Upper and lower bounds of the form —D +e¢ :1:0(%) follow by straightforward manipulations.

Thus the hardest independence model to test against is the product of marginals.
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Appendix B: Proofs of main results

Proof of Proposition 2.1. Let Qg, = Sa UC U B(0;) where Sp = {0 : 0] > A}, C =
Qo, \ [Sa UB(01)], and € is fixed in (8). For ¢ # 01, take v(t) = c(t)/2 from Assumption C1

94
> lim P[Da(61,8) +(=2) - 7(t)/2 > (0] 4]

= 1 (25)

and take & = y(t)/2. Then for ¢ as in Assumption C2,

lim P| inf D,(61,60) > v(t)

n—00 0eB;s(t)

91] = limPan(Ql,t)—i— inf D, (t,0) > ~(t)

n—00 PeBs(t)

For fixed A, C' is a compact set and so can be covered by finitely many balls S; = By, (t1),
s S = By, (tm), such that (25) holds for each: lim, o P [infpes; Du(61,6) > »yj‘ 0] =

4

1, j=1,...,m. Then, letting v = min{~1,...,¥m,ca}, we have

liminf P| inf D,(601,0) >~

n—00 0¢Bc(01) n— 00

01] > liminf P

inf D, (01,0) >
jl,Qm,A{gesj (61,0) >~}

2 - 5)
using Assumption C3 for Sa and (25) for each Sj, j =1,...,m. This is (8).

Proof of Theorem 2.1. Before proving Theorem 2.1, we require a preliminary proposition

which allows us to approximate I,,(6;) with —(1/ n)L;’L(éq) in the usual way.

Proposition B.4 Suppose éq N 01, Assumptions PN1 through PN3 and (6) hold.

(a) Let 0 = 0, + (61 — 6,), where + € [0,1], and let B.(0,) be as in Assumption PN3.

91] -

Then for all € > 0 there exists € sufficiently small that

lim P

n—o0

|
—L(0;) + T(0)

<¢

sup
{r: 0;636(01)}

(b) In particular, (1/n)L!(8,) + T,(01) 250 as n — 0o.
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Proof. By Assumption PN2, 1,,(0;) = —(1/n)E[L"(61)| 61]; hence it suffices to show each
of the following, for all £ > 0:

1
Pl Simie —BILG) 0] <€o] - 1 20
Pl sup 1|L"(9*) L;;(el)|<§91] Y (27)
G;GB (01)

The limit (26) follows from Assumptions (6) and PN3. For (27), let ¢ > 0 be small enough
that Assumption PN3 holds, with £ [ n(€, 01)‘ 91] < £/2, for all large n. By assumption,

.

mnP[ (e, 01) <Q9J (28)

lim P{[My(e,0,) — n(e,el)\ol} | < &/216,}

n—o0 [

= 1,

both 9q v 01 and 9,’1“ v 01; hence

i 1 «
nlglgoP E|LZ(0q) — L) < ¢ Jim

o = Jim P[0y e By, LILuE) - L) < ¢

Vv

Y

by (6) and Assumption PN3. Note that the bound in (28) is uniform on B.(6;), giving the
uniformity in (27). O

For the proof of Theorem 2.1, break up the integral in (11) as follows:

JOrHbTn g (X719)(0) d

e B1X™)d8 butaon
/équtwn wq( |~ ) - ffooq (Xn|9) ( )d9
9 born n
faqfw (X"10)w(0)dO
.00+ J.00)¢] € (X710)w(0)do
I + 1

with € to be determined below. We will examine these three integrals in the order in which

they are numbered. The calculations are modeled after Walker (1969).
Claim B.1 For dll £ > 0, there exists € small enough that

Tim P [|1/{ong" (X"|0,)} — (27)2w(01)] < €| 01] =1
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Proof. Using a two-term Taylor expansion of L, () about éq,

~ —H.)2 w
R R ] s

n

where 67 = éq +7r(0 — éq) s 0, with éq (by Proposition 2.1). For & and & to be determined
momentarily, fix € > 0 so small that, by Proposition B.4, P[Supg*eBE o) 1Ly (07)/ Ly, 6,)—1] <
€11 61] — 1; and by Assumption PN4, 1-&; < infycp, (9,) w(0)/w(01) < supgep, (9,)w(0)/w(0h)
< 1+&;. Then I /q" ()N(”|9q) may be bounded above and below in probability by

onw(01)(1 F &)[2m/(1 £ £))'/?
X [B{(1 £ )20, 101 + € = 0]} — D{(1 £ €)YV 20, 1[0 — e = O]} -

The factor involving ® tends to 1 in probability, since éq z 6, and o, ! 3 . For each fixed

&, an appropriate choice of & and & finishes the proof. O
Claim B.2 For each fixed € > 0,

I/{oud" (X"16)} > 0.
Proof.

/0" (XM0) = onexp{Ln() = Ln@)} [ on' exp{Ln(6) = Ln(6r)}(6)dd

< o1 /B gl)cOp(\/ﬁ)Op(eXp[—n’y])w(H)dH,

where the bound 1 follows from the fact that L,(6) < L,(8,), ¥V 6 (by the definition of the
MLE); and the O, bounds, which are uniform in |§ —6;| > €, V ¢, follow from Proposition B.4,

Assumption PN1, and Proposition 2.1. O
Claim B.3 For all £ > 0,
Tim P[|I3/{ong"(X"10,)} — (27)2w(01)[@(b) - ()] < €| 1] =1

Proof. Let N, = (éq + aan,éq + boy,), and fix € for & and & as in Claim B.1. Since
PN, C B.(0,)|61] — 1, the argument for I3 proceeds just as for I, but with N, replacing
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B(#1) throughout. We can apply the same continuity arguments as in Claim B.1 to discover
that I3/¢"(X ”|éq) is bounded above and below, with probability tending to 1 as n — oo, by

integrals of the form

Y
/ exp {—%(1 + 51)} w(01)(1 F &2)do

~ 0w (01) (1 F &)[2m/ (14 €0]2 [B{(1 % €1)/20} — B{(1 + 1)/} ]

The proof is now completed as for Claim B.1. O

Remarks. The fact that asymptotic normality results should depend little on the true
dependence structure of the data was made clear by Chen (1985). Kass, Tierney and Kadane
(1990) have identified a class of models in which the Chen/Walker-style argument works
well, called the “Laplace regular” models. We note that (i) the continuity and boundedness
conditions of Laplace regularity correspond to our Assumption PN3; (ii) the positivity of the
Hessian for Laplace regularity corresponds to our Assumption PN1 and Proposition B.4, and

(iii) their asymptotic convexity condition is our Proposition 2.1.

Proof of Theorem 3.1.
Proposition B.5 Suppose éq N 01, and assumptions PNI' through PN3 hold.

(a) Let 0; = 0, + (01— 0,), 7 €[0,1]. Then for all € > 0, there exists € > 0 such that

1 _
lim P{ sup | =Ly (0;) + Tn(61;09)] < & Qii] =1
n—roo [r:&;eBs(al) n J

(b) In particular, (1/n)L"(8,) + T, (61;6%) 0.

Proof. The proof of part (a) proceeds as for Lemma B.4, replacing conditioning on ¢ with
conditioning on #¢. Note that part (b) would follow immediately as long as 6, N 0. But
this must be true, for almost all #3: Suppose on some measurable K C supp w(64|6), that

|L’7;(éq) +1,(01;09)] > ¢'. Then

E [1cP [ |00 + Ta(01:69)] > ¢

of] 0] < P[IL5(8,) + Ta(01565)] > ¢

91:| —0

and hence w(K|6;) =0. O
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The main idea for the proof of Theorem 3.1 is to substitute Proposition B.5 for Proposi-
tion B.4 and modify the Claims B.1 through B.3 to assert convergence under P[-|0{], obtaining
0q+bo, o

/é L w@1XM % 20) - o) (29)

pointwise in ¢, and then integrate over 8% to obtain (21).
Remarks. The asymptotic distribution theory under v™ necessarily involves mixing over 69
and this means that there is no well-defined Fisher information resulting from p™—unless it
too is free of #3. The proof of Proposition B.5 breaks down if one tries to use the expected
Fisher information under ¢”, I,(61) = E[—(1/n)L"(61)|6:1]; and, although Proposition B.5
does allow us to replace our definition of o, with o/, = T,,(61;0¢)~'/2, the result would be of
little practical value since the scaling would depend in an unwieldy fashion upon Qg Thus

we see that scaling with o, = {—L”(,)} /2 is essentially required to obtain a useful result.
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