
562 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 2, MARCH 1999

An Information Criterion for Likelihood Selection
A. Yuan and B. Clarke,Member, IEEE

Abstract—For a given source distribution, we establish prop-
erties of the conditional density achieving the rate distortion
function lower bound as the distortion parameter varies. In the
limit as the distortion tolerated goes to zero, the conditional
density achieving the rate distortion function lower bound be-
comes degenerate in the sense that the channel it defines becomes
error-free. As the permitted distortion increases to its limit, the
conditional density achieving the rate distortion function lower
bound defines a channel which no longer depends on the source
distribution.

In addition to the data compression motivation, we estab-
lish two results—one asymptotic, one nonasymptotic—showing
that the the conditional densities achieving the rate distortion
function lower bound make relatively weak assumptions on the
dependence between the source and its representation. This corre-
sponds, in Bayes estimation, to choosing a likelihood which makes
relatively weak assumptions on the data generating mechanism
if the source is regarded as a prior.

Taken together, these results suggest one can use the con-
ditional density obtained from the rate distortion function in
data analysis. That is, when it is impossible to identify a “true”
parametric family on the basis of physical modeling, our results
provide both data compression and channel coding justification
for using the conditional density achieving the rate distortion
function lower bound as a likelihood.

Index Terms—Likelihood selection, mutual information, rate
distortion.

I. INTRODUCTION

T HE Shannon mutual information (SMI) arises
naturally in several settings, including redundancy in

source coding, risk in statistical decision theory, rate of trans-
mission in channel coding, and rate of compression in data
compression. Even though these settings appear to be very
different, they may have a common underlying structure. For
instance, Kanaya and Nakagawa [19] used the parallel between
rate distortion theory and decision theory to give conditions
ensuring that the probability an average loss exceeds a pre-
scribed value goes to zero. This is analogous to to Shannon’s
rate distortion theorem.

Because the SMI is a measure of dependence between the
source and the output, rate distortion is also related to channel
transmission. Indeed, the quantities defining optima in these
settings are both derived from the SMI. Recall that if one
maximizes the SMI over marginal distributions for a source

using a fixed conditional distribution for given to
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define a channel, the result is the capacity. If, instead, one
fixes a marginal distribution for a source and minimizes the
SMI over a class of conditional distributions for given
subject to a distortion constraint, the result is the rate-distortion
function. The source has the same interpretation in both
cases, although we treat it differently depending on whether
we want to transmit it or compress it.

By contrast, the conditional distribution of given , with
density denoted by , serves two functions. First, in
the channel transmission setting, is a channel in the
usual sense. We send , and the receiver gets
which should be decoded to give. Second, in the data
compression setting, is regarded as a description of
how is represented by a codebook with codewords. In
this case, is a source that is to be represented by as few
bits as possible subject to a specified amount of inaccuracy.
The data compression problem can be reformulated as the
counterintuitive task of seeking the test channel that
transmits information as slowly as possible, subject to the
distortion bound. (The upper bound on the distortion ensures
that we necessarily transmit some useful information.) Here,
we use the test channel interpretation of data compression and
relate it to statistical decision theory.

More formally, we recall that the SMI is defined from the
relative entropy, or the Kullback–Leibler number. The relative
entropy between two densities with respect to the same
dominating measure, on the same sample space is

Here, we have used the Lebesgue measure as the dominating
measure and we recall that the relative entropy, although
not a metric, does have metric-like properties (see Csiszár
[11]–[13]). The SMI is the relative entropy between a joint
distribution for two random variables and the product of their
marginals,

where subscripts and arguments indicate the random variable
a density describes.

As a special case, we can imagine sending a message
across a channel times independently. Suppose we
permit the receivers to improve their decoding by pooling
the messages they receive. In this context,

is a random variable taking values in , and is the
vector variable . This gives
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which we recognize as the SMI between the parameter and a
sample of size , . Here, is the density of the source
distribution,

is the mixture density, and

is the posterior density. By Bayes rule, we have

So, the SMI is the expected relative entropy between a
posterior and the prior that generated it, or the expected relative
entropy between an -fold product of the channel and the
marginal density for the received messages. It is seen that
maximizing the middle quantity over the source gives the
capacity—the SMI for which the source differs most from the
conditional distribution of given . Moreover, minimizing
the middle quantity over a class of conditional distributions for

given gives the rate distortion function—the SMI for
which the source differs least from the conditional density of

given .
For simplicity, we assume that and are continuous

and unidimensional. When either is discrete, it will be enough
to replace the integration with a summation. (When either
has finite dimension greater than one, the properties we
use continue to hold.) Let be the distortion from
representing by . We minimize the SMI over the class

of conditional densities which satisfy

(1.1)

Here bounds the expected distortion we will tolerate in
representing by . Note that the optimization is over the
conditional densities directly, not over mixtures such
as and that the integral is over both the source and the
output. Now, the minimal value of the the SMI over

(1.2)

is the rate distortion function (see Berger [3], Blahut [8], and
Cover and Thomas [10]). Since the SMI has been used to rep-
resent the information in a sample, as discussed in Ibragimov
and Hasminsky [18], Bernardo [4], and Efroimovich [15], we
refer to the density achieving the minimum in (1.2) as the
minimally informative likelihood (MIL). This term is justified
by the explanation of the minimization in (1.2) provided in
Berger [3, p. 23].

Informally, our main results are three properties of the
family of solutions optimizing (1.2). First, we show that the
conditional density of the source given the output, ,
converges to the source when the distortion is permitted
to increase. This means that the class of test channels is so
large that the optimal channel is trivial, or equivalently, a
large amount of compression has occurred. Second, we show
that when the distortion shrinks to zero, degenerates
to point mass at . That is, the optimal channel is perfect.

However, no data compression has occurred, so we have
represented the source exactly. In this case, the class of test
channels is too small. Our third main result shows that in the
limit of a large number of cooperative receivers, the expected
relative entropy distance between a sourceand
tends to zero. Equivalently, the Shannon mutual information
goes to zero.

The structure of the rest of this paper is as follows. In the
next section, following Blahut [6], we state the solution to
the rate-distortion function optimization problem. Using this,
we derive the solution for a normal source under squared
error loss. After describing the Blahut–Arimoto algorithm (see
Blahut [7], Arimoto [2]) we show that a unique solution to
the problem exists. In Section III we show how Blahut’s
solutions, the MIL’s, depend on the “distortion” parameter

which determines the size of the class over which the
SMI is minimized. There are two cases, one astends to
zero and the other as increases. In Section IV, we give
two formal senses in which the MIL’s can be regarded as
minimally informative, but not entirely uninformative. Section
V discusses the implications for statistical analysis that follow
from the results in Section IV. We comment that the proofs of
Theorems 1, 2, and 3 are somewhat technical so we have only
described the main steps. Full details are available in Yuan
[22].

II. SOLVING THE OPTIMIZATION PROBLEM

What we have called a minimally informative likelihood,
an MIL, is the conditional density which achieves the rate-
distortion function lower bound defined in (1.2). The calculus
of variations argument for the case of discrete sources is
covered in detail in Berger [3, Sec. 2.5]. The reasoning carries
over to the continuous case: The problem is the same as
described in Berger [3, p. 30] and the variational argument
for fixed can be found in Berger [3, pp. 30–31] and Blahut
[6, pp. 58–60, 214–221]. The result of minimizing (1.2) is

(2.1)

where and are determined by the equations

(2.2)

and

(2.3)

with equality in (2.3) for those such that .
For continuous sources, the minimization to get (2.1) is

valid for any source that has a density that integrates to
one, any distortion which is positive, continuous in
its two arguments and zero when , and any ,
where is defined before its use in Theorem 3.2. The calculus
of variations technique produces (2.1) as the minimum of
the SMI subject to the distortion constraint (2.2) and to the
constraint that the function of and integrate to one over.
The calculus of variations procedure in effect “differentiates”



564 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 2, MARCH 1999

with respect to the function evaluated at specific
and values (see Blahut [6, proof of Theorem 4, part c,
p. 463]. Blahut [7, p. 216] establishes that the minimum
from the calculus of variations argument, given in (2.1), is
nonnegative, and therefore is a conditional density. (Inequality
(2.3) is obtained as a necessary and sufficient condition on
to verify that a density of the form (2.1) minimizes (1.2),
see Blahut [7, p. 217].) By the uniqueness guaranteed in
Proposition 2.1 below, there is no other minimum.

McEliece [21], Blahut [8], and Cover and Thomas [10]
provide statements and proofs of many important properties
of the rate-distortion function. They also provide closed-form
examples for the binomial, the normal, and for finite probabil-
ity space in general. Here, we focus on the class of solutions
identified by Blahut [6] so we verify that Blahut’s solutions are
reasonable for the case that is a Normal density
and is squared error loss. Cover and Thomas [10, p. 343]
have essentially done this for a binary source; their treatment
of the normal case did not include this.

From the form of (2.1), one expects that the MIL will be
normal. This turns out to be the case subject to the restriction

, i.e., the amount of distortion that can be tolerated
must be less than the variance of the source distribution. For

, the rate distortion function is zero, see Cover and
Thomas [10, p. 344], so no unique solution exists. We see
also that , so we get that must be greater than

. It will be seen that is

and . Clearly, if then, in the limit as goes
to infinity, can be interpreted as the mean. More generally,
any interpretation of will depend on the prior, and the loss

which determine (2.1).
Note that must satisfy

(2.4)

with equality in (2.4) for those with . With
some foresight, set for some

real constants and , such that the ratio of and
is a constant. Now, the exponent of

is

which is

Requiring that

holds for all gives and . Thus,
we have

which is aNormal density. Now, (2.1) gives

After substituting for and , this is the density of a

Normal

and

Here or behaves like a dispersion parameter for
in addition to its role in defining . Also, for fixed

, as , , and hence its
variance increases to . For fixed , as

, the degenerate distribution at, consistent
with Theorem 1 below. This provides a sense in whichis
also a smoothing parameter, ensuring that an MIL does not
just concentrate at the data points.

Note that if one were to form the posterior using a
Normal prior for and the MIL

Normal

for a single outcome, one would find is Normal .
That is, the posterior does not depend onand depends on

only because .
As suggested by this example, one cannot solve for the

optimal explicitly, outside of a few
special cases. However, one can obtain numerically
by the Blahut–Arimoto algorithm (see Blahut [7], Arimoto
[2]). This is a particular instance of the alternate minimization
algorithm whose convergence was established by Csiszár [12]
(see Cover and Thomas [10], Csiszár and Tusnady [14]). In the
present context, the procedure is as follows. Choose an initial
marginal density , a prior , and any positive . Let

(2.5)

and form

(2.6)

from . Next, replace in (2.5) by from (2.6)
to form . Now one obtains from
by mixing out . In this fashion one generates a sequence of

for a given and . It follows from Csisźar and
Tusnady [14] that as tends to infinity, converges
to . Finally, one can choose so that the equality in
the constraint (1.1) is satisfied. Indeed, Blahut [6] shows that
the minimum in (1.2) is achieved for this. That this procedure
gives useful results in statistical applications is shown in Yuan
and Clarke [23].

Our first result is a proposition guaranteeing that the solu-
tions specified in (2.1) and (2.3) to (1.2) are unique.
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Proposition 2.1: For each has a unique minimizer
in .

Proof: Since is convex, it is enough to show that
is strictly convex on as a functional of .

Write . Now , and
, with , we have

equals

By the log-sum inequality, see Cover and Thomas [10], we
have that is bounded from above by

III. SOME KEY PROPERTIES OF

MINIMALLY INFORMATIVE LIKELIHOODS

Clearly, the MIL depends on the choice ofor used to
define . Next, we prove two theorems that show how the
size of in (2.1) affects the behavior of the MIL. We
write for the MIL, for the marginal density for
the output, and for the channel. Let denote unit

mass at , and denote convergence in distribution. When
needed, is Lebesgue measure on . First, we characterize
the behavior of the MIL for large.

Theorem 3.1:
i) The marginal density for from is ,

where

Let be the support of , with interior , and let
be the set of points in at which is continuous. Assume

is strictly increasing in , with
, and , for all .

Then as , we have the following.
ii) The marginal density for satisfies

if
for a.e.

(3.1)

iii) and the conditional densities satisfy

(3.2)

and

(3.3)

Remark We do not include a proof of (3.1) here because
it is similar to a theorem in Berger [3, p. 103, Theorem
4.3.4, expression 4.3.53]. Our conditions are slightly different
because they use the continuity of the solutions (2.1) to get a
pointwise limit; Berger [3] obtains (3.1) in absolute mean.

Proof:
i) From (2.1) we see that implies .

So

by (2.3). If , then , we get the same
result.

iii) To prove (3.2), let be the characteristic function of
. We have the expression at the bottom of this page.

For and appropriate choices ofand , we can
use Step 4 [22, Proof of Theorem 3.3.1] to get

as

This can be used to show that

Write the first term as and the second term as
. It can be shown that

and

holds for all . Thus if we first let and then let ,
we get , the characteristic function of

.
To prove (3.3), let be the characteristic function of

. Now, is (see the second expression at the top
of the following page). As in Step 1 [22, Proof of Theorem
3.3.1], the second term tends to zero astends to infinity.
The same technique of proof used to obtain (3.1) gives

where .
By the same reasoning as in Step 4 [22, Proof of Theorem
3.3.1], and tend to as tends to zero. Therefore,
the ratio tends to as in (3.1). Thus we have
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, a.e. with respect to for and
part iii) is proved.

As noted in the Introduction, Theorem 3.1 shows that as
goes to infinity, the observation channel becomes totally

informative in the sense of converging to point masses. Our
next result confirms that increases as decreases and the
reverse, and then guarantees that in the limit asgoes to
zero, the observation channel becomes totally uninformative.
More precisely, let

and set

It will be seen that when , the method breaks down,
because there is no necessary relationship between the data
and the estimand.

Theorem 3.2:Assume is not constant. Then we have
i) For exists uniquely

and is a continuous, decreasing function of.
ii) For and determine each other uniquely. We

can therefore write , or .
iii) For

and the infimum is achieved by any which is
independent of .

iv) Assume

for

then , i.e., is a decreasing function.
Under conditions of Theorem 3, we have the following:
v) , as .
vi) , as .
vii) Let and be the prob-

ability measures corresponding to and
, respectively. If in distribution for

some probability measure as (or ), then

(3.4)

(3.5)

viii) Under conditions of (vii), if , then
.

Proof:
i) This follows from Proposition 1 and Blahut [8, Theorem

6.3.2].
ii) By (2.2), is determined uniquely by . On the other

hand, for , we know that there is a unique .
By way of contradiction, if there is a such that

then by i) of Theorem 3.1, . Using (2.1) gives
that is constant as a function of, which
is impossible.

iii) In [8, Proof of Theorem 6.3.2] it was shown that the
rate distortion function is zero for . By i), it is decreasing
in . Clearly, if is independent of , then .

iv) Consider for two values and . For fixed

Adding this to the corresponding expression with and
interchanged gives

(3.6)

Averaging over in (3.6) and using the technique of Propo-
sition 2.1 finishes the proof.

v) Using (2.2) it is enough to show

(3.7)

A continuity argument on and satisfying bounds
part of the integral in (3.7). To bound the other part, shrink the
domain of integration in the denominator to an interval around
. Then, bound the loss function on the reduced domains of

integration and bound the result by use of

and
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vi) Let , then from iii) we know that
, and so is independent of . That is,

or it cannot be independent of.
vii) For (3.4), it is enough to prove that for all ,

the Borel algebra on , as Let
and choose to ensure that for , the integral of

(2.1) over can be bounded by

(3.8)

Since is bounded and continuous on , and

(3.8) is bounded from above by .
For a lower bound, integrating (2.1) over and bounding

the integral in the denominator by, we get

for appropriately chosen and . So, for small, we have
, establishing (3.4).

To get (3.5) for small, integrate the posterior from the
proof of (3.3) over a set and choose and so that

(3.9)

For the inequality the other way, for small, choose ,
and small enough that

viii) By way of contradiction, suppose . We
can choose and independent of so that by (2.1)
we have

and the limit of the right-hand side, as , is

(3.10)

Now, since , the right-hand side of (3.11) is
strictly greater than

for some . By (3.4), the continuity of and
as , we get

a contradiction, so (3.5) follows.

When it exists, let

If , for example, then must have a
finite second moment for to exist. In particular, if the prior

is , then

so

and the infimum is achieved at . If is
Exponential , where is the location parameter, then

and

and the infimum is achieved at . This ensures
that Theorem 3.2 can be used, in some cases, to identify the
limits of MIL’s in practice.

IV. TWO FORMAL SENSES IN WHICH THE

CONDITIONAL DENSITY IS MINIMALLY INFORMATIVE

In this section, we provide two senses in which the condi-
tional density which achieves the rate distortion function lower
bound can be regarded as minimally informative. Suppose that
we replace from the last section with a multivariate random
variable and consider

(4.1)

Denote the MIL for by , that is, write

Similar to the univariate case handled in Blahut [6], one can
obtain a form for the MIL based on the loss function. For
given prior , this is

(4.2)

where is determined by

(4.3)

with equality for ’s such that , and is
determined by . We will see that a posterior formed from
the parametric family (4.2) and the sourceis asymptotically
the same as in a relative entropy sense. That is, the data
update trivially. In addition, we will see that use of the
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MIL, , gives the weakest inferences possible among
the elements of . Note that this differs from the results in
Section III which assumed a univariate.

Our first result in this section is the asymptotic equivalence
of and the posterior based on and (4.2). Note that

has a dependence structure determined in part by
and , and that typically cannot be given in closed

form. To prove results about the MIL we use an independence
density in . The expected relative entropy between
the posterior based on this density andand the prior is
bounded by the relative entropy between the posterior based
on the MIL and and the prior. We prove the first expected
relative entropy tends to zero asgoes to infinity.

Our result is for the case that the distortion is

for given . For convenience, we absorb theinto in
and assume , for all . The average loss for fixed

is now

Its supremum and infimum are

Theorem 4.1:Assume that is bounded, that is
continuous in both arguments, and that exists and is
. Now, if we have

Remark: This result contrasts with the fact that for in-
dependent and identically distributed (i.i.d.) data distributed
according to a density where is a -dimensional
parameter, we have .

Proof:
Step 1:First we prove that there exists a probability density

such that the new parametric family for defined by

(4.4)

is an element of for large enough. The main steps are as
follows. Choose a constant such that and a
probability density so that for all

and . Now, satisfies

(4.5)

Denote the double integral in (4.5) by . Since ,
and , to see that for all large , it

is enough to show . By a sequence of standard
inequalities we can derive that

Finally, a slightly involved argument gives that
for all large . This argument uses the Dominated Con-

vergence Theorem three times; once pointwise inand then
two more times for the numerator and denominator of the
resulting bound.

Step 2:We prove the assertion of the theorem. Let
be the density used in Step 1 to define

and write

Now, the nonnegative quantity is
bounded from above by

(4.6)

(4.7)

(4.8)

The term (4.6) is . It is enough to show
(4.7) and (4.8) . For (4.7), since is convex,
we have

(4.9)

for any and . Denoting the integral on the right of (4.9)
by we get

and we have , almost surely with respect
to for any . Now, a convergence in probability argument
gives

for each . Taking logs, one sees that the Dominated Conver-
gence Theorem implies that (4.6) and (4.7) will cancel.

Finally, (4.8) is nonpositive: Regard (4.8) as an expecta-
tion with respect to rather than and use the
inequality .

Next, we turn to a nonasymptotic sense in which the MIL
is minimally informative. Following Csisźar [13], the tangent
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hyperplane determined by and is

Let be another density. The tangent hyperplane
determined by and is

These two tangent hyperplanes divide the whole space of
priors into subspaces. One of them is ,
defined to be

Let and let be
a member of . We show that the MIL updates

to a posterior further from any target density
in Kullback–Leibler distance than any other member

in does. This means that the MIL requires more
data than any other member of does to achieve the same
accuracy of estimation. To get a result for individual’s, let

Since

it is likely that for some .

Theorem 4.2:
i) If

and

then

ii) If for some , , then

Proof:
i) We have

and the corresponding expression with in place of
. This implies

and the corresponding (reversed) inequality with
in place of . Taken together these two inequalities
give i).

ii) Since , we have that

We also have the reverse inequality for in place
of . Taking expectations with respect to
and , respectively, gives two inequalities which, taken
together, give ii) in view of the definition of the MIL.

V. DISCUSSION

We have studied the solutions to the problem of minimiz-
ing the Shannon Mutual Information (SMI) over a class of
test channels defined by a distortion constraint. That is, we
have studied the class of conditional densities which achieve
the rate-distortion function lower bound. The solutions are
parametric families that depend on a distortion function, an
allowable distortion, and the source distribution itself. While
the rate-distortion function quantifies the amount of data
compression that can be optimally achieved, the conditional
density that achieves the rate-distortion function lower bound
has the weakest dependence between the source and the output
within the class of conditional densities over which we have
minimized.

Our main results are properties of these conditional densi-
ties. For a fixed source and distortion function, we have shown
that as the distortion permitted increases, the channel becomes
ever less informative. By contrast, when the distortion per-
mitted decreases, the channel becomes ever more informative.
The limits of totally informative and totally uninformative can
be characterized as trivial: The first is just the source itself;
the second is a limiting distribution independent of the source.

Our third main result is that the optimal channels are
minimally informative in an asymptotic sense. If we minimize
the SMI between a source andi.i.d. random variables that
depend on it, we get an-variate density. If we take the limit
as increases of the SMI between the source and anvariate
random variable distributed according to the optimalvariate
density, we find this limit to be zero. By Bayes rule, this
SMI is the expected relative entropy between the source and
the conditional distribution of the source given the random
variable. That is, the variate random variable contains ever
less information about the source asincreases, i.e., as the
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number of receivers increases. By contrast, the rate-distortion
function has a fixed number of receivers and minimizes over
replications of the data compression procedure.

An alternative way to view the procedure proposed here
is that it is a variant on maximum entropy. Indeed, the
SMI is the difference between an entropy
and a conditional entropy . Minimizing the SMI
with a fixed distribution for over the class of conditional
densities used for the rate-distortion function is equivalent
to maximizing a conditional entropy over the same class. In
addition, this class of densities has a statistical meaning. It is
the class of likelihoods for which the Bayes risk of estimating
the parameter by the random variable itself is bounded
by a real number .

More generally, information-theoretic techniques have been
used in various statistical contexts. The SMI has been used,
for instance, by Bernardo [4]. He proposed using the capacity
achieving source for a channel as a minimally informative
prior when one uses the channel as a parametric family for data
analysis. Here we have essentially reversed this. In contrast
to Bernardo’s reasoning, we have minimized the SMI over
parametric families for a fixed prior: This provides optimal
data compression and produces the conditional density that
gives a posterior as close as possible to the prior. Conditional
densities giving posteriors close to their priors are uninfor-
mative, and because they achieve the rate-distortion function
lower bound we have called them minimally informative
likelihoods, MIL’s. Theorems 4.1 and 4.2 verify the validity
of this interpretation.

Although this is initially counterintuitive, in fact it reflects
the reality that usually a statistician is unable to formulate
a physically plausible likelihood. An MIL in effect mini-
mizes the strength of assumptions that go into the choice of
likelihood even though this minimization is over likelihoods
that have bounded Bayes risk, and so cannot be too patho-
logical. Unlike other methods for likelihood selection, this
method directly optimizes over possible relationships between
outcome values and parameter values. This relationship is
fundamental because one can only make inferences about
the parameter from the data if the parameter and data are
dependent. Indeed, the SMI between two random variables
is zero if they are independent. The hope would be that
using an MIL, or rate-distortion function achieving conditional
density, would be conservative in the sense that even though
it is not right, an investigator could use it to make weak
but valid and useful inferences, when no other likelihood is
available. The confidence intervals, while consistent, might be
wider than optimal; rejecting a null hypothesis using an MIL
would correspond to a better significance level under the true
likelihood.

An earlier effort to find a minimally informative likelihood
is due to Huber [16], [17]. For simplicity, assume the data
follow a distribution of the form where is unknown
and is a member of a class. Then, one can searchfor the
distribution function with the smallest Fisher information.
Huber [17] states that asymptotically efficient -estimators
for obtained by using have minimax properties with
respect to . Related problems were solved by Levit [20] and

Bickel and Collins [5]. The minimax approach taken in these
references maximizes over parameters and then minimizes
over estimators. Here, decision theory chiefly enters in defining
the set of likelihoods over which one will minimize the SMI.
This set is defined to be those parametric families for which
the random variable itself as an estimator of the parameter
has Bayes risk under the chosen prior bounded by. Recalling
that the SMI is itself a minimum over density estimators, see
[1], the procedure here amounts to minimizing over likelihoods
after having minimized over estimators.

In the context of the normal example of Section II, using an
MIL amounts to a recommendation that if one truly believes a
normal prior is appropriate and one knows little else, the only
statistical option is to report an inflated posterior variance.
Although not satisfying, this result is consistent with what
one expects in the normal case with squared-error loss. If one
chooses a different prior, one gets other likelihoods that do not
admit closed-form expressions. More generally, one can use
products of univariate MIL’s to achieve better inferences; this
would be minimally informative apart from the assumption of
independence. Note that in this formulation, the interpretation
of the parameter arises from and the optimization; is a
location parameter in general only in the sense that it can be
estimated by with Bayes risk bounded by. This reverses
the role of estimator and likelihood, because it is the estimator
that is fixed, and we are seeking parametric families for which
it is good.

Once one has a prior and the MIL, one can construct
credibility sets or find posterior probabilities for Bayesian
hypothesis testing. Alternatively, one can use the MIL to
find a maximum-likelihood estimator and form confidence
intervals even though the optimality properties of the MIL
are Bayesian. Indeed, because our perspective is information-
theoretic, the technique is generally applicable. It can be used
with most summary statistics, interacts well with parameter
transformations, and can be used with dependent data. The
major drawback at the present time is that coding algorithms
to obtain the minimally informative likelihood, or posteriors
or other estimators can be considerable.

Finally, an unexpected benefit of MIL’s is that they permit
a comprehensive robustness analysis. In addition to being able
to assess the sensitivity of inferences to choice of loss,and
prior, automating the choice of likelihood permits one to assess
sensitivity to modeling strategy. Namely, use of MIL’s permits
one to compare the effects of using different summary statistics
and different numbers of parameters. For instance, one might
have an independent sequence of paired data and want to
estimate the difference in the locations. One can marginalize
a bivariate likelihood to get a model for the difference in each
pair. This gives a univariate posterior for a single parameter
generating credibility sets for the difference in means in one
sense. Alternatively, one can condition on all the data in a
two-parameter likelihood to get a bivariate posterior. Now,
one can marginalize in the posterior to get a credibility set
for the difference in means in a different sense. One expects
that taking differences in the data will be similar to taking
differences in the parameters, but it is not clear that the two
modeling strategies will always give compatible inferences.
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