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An Information Criterion for Likelihood Selection

A. Yuan and B. ClarkeMember, |IEEE

Abstract—For a given source distribution, we establish prop- define a channel, the result is the capacity. If, instead, one
erties of the conditional density achieving the rate distortion fixes a marginal distribution for a souréé and minimizes the
function lower bound as the distortion parameter varies. In the SMI over a class of conditional distributions f&F given X

limit as the distortion tolerated goes to zero, the conditional . . . . . . .
density achieving the rate distortion function lower bound be- subject to a distortion constraint, the result is the rate-distortion

comes degenerate in the sense that the channel it defines becomelinction. The sourceX has the same interpretation in both
error-free. As the permitted distortion increases to its limit, the cases, although we treat it differently depending on whether
conditional density achieving the rate distortion function lower we want to transmit it or compress it.

bound defines a channel which no longer depends on the source By contrast, the conditional distribution f given X, with
distribution. ’ ’

In addition to the data compression motivation, we estab- density denoted by)(y|a:), serves two functions. First, in

lish two results—one asymptotic, one nonasymptotic—showing theé channel transmission settingy | z) is a channel in the
that the the conditional densities achieving the rate distortion usual sense. We senfl = xz, and the receiver gefs = y
function lower bound make relatively weak assumptions on the \which should be decoded to give. Second, in the data
dependence between the source and its representation. This corre-¢omnression settingy(y|z) is regarded as a description of
sponds, in Bayes estimation, to choosing a likelihood which makesh X ted b debook with cod q
relatively weak assumptions on the data generating mechanism O_W 1S represen ed by a 90 ebook with codewogdsn

if the source is regarded as a prior. this case,X is a source that is to be represented by as few

Taken together, these results suggest one can use the conbits as possible subject to a specified amount of inaccuracy.
ditional den_sity obtained from_th_e rate _distorti_on fl_Jnction in  The data compression problem can be reformulated as the
data analysis. That is, when it is impossible to identify a "true” o nerintuitive task of seeking the test chanp@y|z) that
parametric family on the basis of physical modeling, our results ¢ its inf fi lowl ibl biect to th
provide both data compression and channel coding justification r_ansn_n S Information as slowly as possi e_' su _jeC 0 the
for using the conditional density achieving the rate distortion distortion bound. (The upper bound on the distortion ensures
function lower bound as a likelihood. that we necessarily transmit some useful information.) Here,

Index Terms—Likelihood selection, mutual information, rate we usg the test. channel mtgrpretanon of data compression and
distortion. relate it to statistical decision theory.

More formally, we recall that the SMI is defined from the
relative entropy, or the Kullback—Leibler number. The relative
entropy between two densitigs ¢ with respect to the same

HE Shannon mutual information (SMI)(X;Y") arises dominating measure, on the same sample space is
naturally in several settings, including redundancy in (x)
. . . . . . . D P 1 ‘p 'T d
source coding, risk in statistical decision theory, rate of trans- (rO)lla()) = [ p(x)log o)

mission in channel coding, and rate of compression in data o
compression. Even though these settings appear to be e, we have used the Lebesgue measure as the dominating

different, they may have a common underlying structure. Fi€asure and we recall that the relative entropy, although
instance, Kanaya and Nakagawa [19] used the parallel betw®@% @ metric, does have metric-like properties (see @sisz
rate distortion theory and decision theory to give conditiotd1l-{13]). The SMI is the relative entropy between a joint
ensuring that the probability an average loss exceeds a pclibs_tnbutmn for two random variables and the product of their

scribed value goes to zero. This is analogous to to Shannoff&rginals,
rate distortion theorem. e  plx,y)
Because the SMI is a measure of dependence between the Hx:Y) = /p(x’y) log p(z)p(y) do dy
source.an.d the output, rate disto.rtlion is a}lsp relatt_ad to.channel = D(pxy|lpx X py)
transmission. Indeed, the quantities defining optima in these ) oo )
settings are both derived from the SMI. Recall that if onWhere subscripts and arguments indicate the random variable

maximizes the SMI over marginal distributions for a sourcd density describes. o _
X using a fixed conditional distribution fof given X to ~ AS & Special case, we can imagine sending a mesgage
across a channel(z|#) n times independently. Suppose we
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which we recognize as the SMI between the parameter antlawever, no data compression has occurred, so we have
sample of sizen, X™. Here,w(#) is the density of the source represented the source exactly. In this case, the class of test

distribution, channels is too small. Our third main result shows that in the
limit of a large number of cooperative receivers, the expected
my, = m(z") = /w(9)p($" |6) do relative entropy distance between a souteceand w(f|z")
tends to zero. Equivalently, the Shannon mutual information
is the mixture density, and goes to zero.

(0]2™) = p(a™ | 6)w(8)/m(z") The structure of the rest of this paper is as follows. In the
e P vy next section, following Blahut [6], we state the solution to
is the posterior density. By Bayes rule, we have the rate-distortion function optimization problem. Using this,
we derive the solution for a normal source under squared
1(©; X™) = En D(w(-| X")|[w(-)) = EuD(p(-|8)|lma()).  error loss. After describing the Blahut—Arimoto algorithm (see
So, the SMI is the expected relative entropy between BallahUt [7], Arimoto [2]) we show that a unique solution to

. . . g] roblem exists. In ion Il we show how Blahut’
posterior and the prior that generated it, or the expected rela'ut & problem exists Sectio € sho 0 ahut's

Vq M 1 13 H T ”

solutions, the MIL's, depend on the “distortion” parameter
entropy between am-fold product of the channel and the hich determines thepsize of the class over pwhich the
marginal density for the received messages. It is seen t

maximizing the middle quantity over the source gives the | is minimized. There are two cases, onelatends to
g q Y g zero and the other abkincreases. In Section IV, we give

capacity—the SMI for which the source differs most from ttho formal senses in which the MIL’s can be regarded as

conditional distribution of® given X™. Moreover, minimizing .. . ) . , . .

the middle quantity over a class of conditional distributions f rpmlmally informative, but not entirely uninformative. Section
N y discusses the implications for statistical analysis that follow

X _given © gives t_he rate distortion funcﬂon_ the SMI.forfrom the results in Section IV. We comment that the proofs of
which the source differs least from the conditional density CFheorems 1,2, and 3 are somewhat technical so we have only

© g|ven.X L : described the main steps. Full details are available in Yuan
For simplicity, we assume thak and # are continuous

and unidimensional. When either is discrete, it will be enoug}%z]'

to replace the integration with a summation. (When either

has finite dimension greater than one, the properties we Il. SOLVING THE OPTIMIZATION PROBLEM

use continue to hold.) LeL(x,6) be the distortion from  What we have called a minimally informative likelihood,
representing? by z. We minimize the SMI over the classan MIL, is the conditional density which achieves the rate-

P; of conditional densitiew(x|9) which satisfy distortion function lower bound defined in (1.2). The calculus
of variations argument for the case of discrete sources is
//p(w | 0)w(0)L(x,0)drdo <. (1.1) covered in detail in Berger [3, Sec. 2.5]. The reasoning carries

over to the continuous case: The problem is the same as
Here!l > 0 bounds the expected distortion we will tolerate imlescribed in Berger [3, p. 30] and the variational argument
representing? by X. Note that the optimization is over thefor fixed I can be found in Berger [3, pp. 30-31] and Blahut
conditional densitiep(z|d) directly, not over mixtures such [6, pp. 58-60, 214—221]. The result of minimizing (1.2) is
asm(z) and that the integral is over both the source and the (N AL(,8)
output. Now, the minimal value of the the SMI ovEY pi(z]0) = —2 (@)e 2.1)

= T e 0 dy
R() = inf 1(©, X) (1.2)
pEP

where A andm*(x) are determined by the equations

is the rate distortion function (see Berger [3], Blahut [8], and o,

Cover and Thomas [10]). Since the SMI has been used to rep- //PA(x |)w(0)L(x,0)dxdd =1 (2.2)
resent the information in a sample, as discussed in Ibragimov

and Hasminsky [18], Bernardo [4], and Efroimovich [15], wénd

refer to the density achieving the minimum in (1.2) as the e M ap(9)

minimally informative likelihood (MIL). This term is justified T () Ew® dy dg <1 (2.3)
by the explanation of the minimization in (1.2) provided in " "

Berger [3, p. 23]. with equality in (2.3) for those: such thatmn*(x) > 0.

Informally, our main results are three properties of the For continuous sources, the minimization to get (2.1) is
family of solutions optimizing (1.2). First, we show that thevalid for any sourcew that has a density that integrates to
conditional density of the source given the output{f|z), one, any distortion(f,z) which is positive, continuous in
converges to the souree(f) when the distortion is permitted its two arguments and zero when= 6, and anyl € (0,1),
to increase. This means that the class of test channels iswdwre! is defined before its use in Theorem 3.2. The calculus
large that the optimal channel is trivial, or equivalently, af variations technique produces (2.1) as the minimum of
large amount of compression has occurred. Second, we shbe SMI subject to the distortion constraint (2.2) and to the
that when the distortioh shrinks to zerow(f|z) degenerates constraint that the function of andé integrate to one ovet.
to point mass at:. That is, the optimal channel is perfectThe calculus of variations procedure in effect “differentiates”
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with respect to the functiom(-|-) evaluated at specifiez which is aNormaly, 0% — %) density. Now, (2.1) gives
and 8 values (see Blahut [6, proof of Theorem 4, part c, 1
p. 463]. Blahut [7, p. 216] establishes that the minimum Pi@]0) = ————
from the calculus of variations argument, given in (2.1), is dm(a? + A)

nonnegative, and therefore is a conditional density. (Inequalififter substituting fora and b, this is the density of a
(2.3) is obtained as a necessary and sufficient conditiombn

—(@P M) (m— 252423)\9 )2

2
to verify that a density of the form (2.1) minimizes (1.2), Norma|<w7 i(l _ 1 ))
see Blahut [7, p. 217].) By the uniqueness guaranteed in 2)0? 22 2)0?
Proposition 2.1 below, there is no other minimum. and
McEliece [21], Blahut [8], and Cover and Thomas [10]
provide statements and proofs of many important properties I\ = //p§($ | 6)w(6)L(x,0) dx db
of the rate-distortion function. They also provide closed-form .

2 2
examples for the binomial, the normal, and for finite probabil- - + < 4 ) o2 = i_
ity space in general. Here, we focus on the class of solutions 2(a®+2)  \a®+A 2A
identified by Blahut [6] so we verify that Blahut's solutions are pere 1/X or | behaves like a dispersion parameter for

reasonable for the case that:) is a Normaly, %) density ,+(.|4) in addition to its role in defining?;. Also, for fixed
and L is squared error loss. Cover and Thomas [10, p. 34g], )\ aso? — o, pi(-16) — N, L), and hence its

have essentially done this for a binary source; their treatmgfiiance increases Eéx = I()\). For fixeég?u, o2, as\ — oo,
of the normal case did not include this. pi(-168) — ((6), the degenerate distribution éf consistent

From the form of (2.1), one expects that the MIL will b&yith Theorem 1 below. This provides a sense in whicis

normal. This turns out to be the case subject to the restrictigy 5 smoothing parameter, ensuring that an MIL does not
I < o2, i.e., the amount of distortion that can be t°|erat‘|9__[é|st concentrate at the data points.

must be less than the variance of the source distribution. FOlNgte that if one were to form the posterior using a
1 > o2, the rate distortion function is zero, see Cover arﬂormal(u &2) prior for 6 and the MIL
Thomas [10, p. 344], so no unique solution exists. We see

also that/(\) = 1/(2X), so we get thah must be greater than Normal<u + 9(2)\0’22 - 1)’ 1 <1 1 . ))
1/(2¢%). It will be seen thatm*(-) is N(u,0? — 5%) 2\o 2\ 2o
. B p+6(2 0% —1) 1 1 for a single outcome, one would find(é | z) is Normal X, ).
i) =N 2M\o2 Y9y 1= N2 That is, the posterior does not depend ;ormnd depends on

L _ _ . ) o only becauser? > I.
andi(\) = 5. Clearly, i, = O then, in the limit as\o” goes Ag"gggested by this example, one cannot solve for the
to |nf|n|ty, 0 can be mtgrpreted as the mean. More generallgptimm p(z]6) = pi(x|6) explicitly, outside of a few
any interpretation of will depend on the prior, and the lossspecial cases. However, one can obtajfiz | #) numerically
L which deteimme (2.1). i by the Blahut—Arimoto algorithm (see Blahut [7], Arimoto
Note thatrm"(-) must satisfy [2]). This is a particular instance of the alternate minimization
G—A(w—e)zw(g) algorithm whose convergence was established by &@s[42]
T me(y)e =07 dy dfg <1 (2.4) (see Cover and Thomas [10], Csisand Tusnady [14]). In the
i o . ) present context, the procedure is as follows. Choose an initial
with equality in (2.4) for thoser with m*(z) > 0. With

marginal densit -), a priorw(-), and any positive\. Let
some foresight, sei*(y) = Cexp{—(ay — b)?} for some 9 ymo(-), a priorw(:) yp

—AL(z,6
real constants: and b, such that the ratio of~"2-*~ and pia(z]8) = mo(w)efAL(, g) (2.5)
[m*(y)e=*@=" dy is a constant. Now, the exponent of Jmoly)e L) dy
m*(y)e= =" is and form
~[(ay=0)*+A(y—0)*] = ~[(a® +N\)y* ~2(ab+0)y+b*+-267] my(z) = / pLA(z | O)w(6) df (2.6)
e s from w(.). Next, replaceno(-) in (2.5) by my(-) from (2.6)
2 2 rom w(-). Next, replacemq(-) in (2.5) by m(-) from (2.
—(@®+ ) <u - M) - [bQ +26% — (ab;—)‘e) to form ps »(z|6). Now one obtainsm,(-) from ps A(-|6)
a® + A @+ A by mixing outé. In this fashion one generates a sequence of
Requiring that pn.a(x] 8) for a giveni, z, andé. It follows from Csisar and
) o (ab+ A\0)? (6 — p)? Tusnady [14] that a& tends to infinity,p,, (x| #) converges
[b T AT — s Y } =52 to pi(x | #). Finally, one can choos# so that the equality in

the constraint (1.1) is satisfied. Indeed, Blahut [6] shows that
holds for all¢ givesa® = A\/(2Ac® — 1) andb = ap. Thus, the minimum in (1.2) is achieved for this That this procedure
we have gives useful results in statistical applications is shown in Yuan
1 el and Clarke [23].
- Our first result is a proposition guaranteeing that the solu-
tionspa(z | #) specified in (2.1) and (2.3) to (1.2) are unique.

lal @y _

= N
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Proposition 2.1: For eachl, R(l) has a unique minimizer Remark We do not include a proof of (3.1) here because
p*(-]-) in P it is similar to a theorem in Berger [3, p. 103, Theorem
Proof: Since P; is convex, it is enough to show that4.3.4, expression 4.3.53]. Our conditions are slightly different
1(©,X) is strictly convex onP; as a functional ofp(-|-). because they use the continuity of the solutions (2.1) to get a
Write I(p) = I(©,X). NowV 0 < A < 1,andp:(-|-),p2(-|-) pointwise limit; Berger [3] obtains (3.1) in absolute mean.

€ Py, with p1(-]-) # p2(-|-), we havel(Ap; + (1 — X)p2) Proof:
equals i) From (2.1) we see that}(z | 6) > 0 impliesm%(x) > 0.
So
JApL(z]0) + (1 = Mpa( ] 0)] . ALy (g
// /p}\($|9)w( Ydo = mi (x / ok AL(Sﬁ)) — df
e 2@+ (L= Npa(|6) v
5 (@) + (1= Nma(z) ' = mj(z)
By the log-sum inequality, see Cover and Thomas [10], wi ey (2:3). 1t p3([6) = 0, thenm3(z) = 0, we get the same
have that/(Ap; + (1 — A)ps) is bounded from above by result. - .
iii) To prove (3.2), lety,(-) be the characteristic function of
16)1o pl( | 6) 4 de pi(-]6). We have the expression at the bottom of this page.
Opi(z ( ) For ¢ € S° and appropriate choices 6fanda > 0, we can
// 16)1 pa(z|6) 00 de use Step 4 [22, Proof of Theorem 3.3.1] to get
1 — p x og —— * — 2
2( ma(x) f[e sossl: mi(y)e AL(v:6) dlyy
= A( — MI(p2). O J[e 5015 m () e dy
92— AlT(8)—1.(8/2)]
IIl. SoME KEY PROPERTIES OF < — — 0, as\ — oo.
a
MINIMALLY INFORMATIVE LIKELIHOODS This can be used to show that
Clearly, the MIL depends on the choice bbr A\ used to f[e so4s] m)\(x)e—)\L(az,e) cos (zt) dz
define ;. Next, we prove two theorems that show how the ¢5(¢) = YR o)
size of A = A() in (2.1) affects the behavior of the MIL. We Jo-s.045 ™3 (e dy
write p3 (x| 8) for the MIL, m3 () for the marginal density for .f[e_5,9+51 m (2)e= M) sin (wt) d
the output, andv(#| x) for the channel. Le{(¢) denote unit +1 +o(1).

Jo—s o5y MA@e MW dy
Write the first term as/i(\,¢) and the second term as
tJo(A, t). It can be shown that

mass atf, and 2 denote convergence in distribution. When
neededy(-) is Lebesgue measure @t . First, we characterize
the behavior of the MIL forA large.

Theorem 3.1: %11)% J1(A,t) = cos (6t)
i) The marginal density fortX from pi(z|6) is mi(z), and
where

%llr(l) Jo(A,t) = sin (6¢)

mi () = / P B)w(6) db.

Let S be the support ofw(-), with interior S°, and letC
be the set of points irt at whichw is continuous. Assume
L(x,0) = L(|x — 8]) is strictly increasing injx — 6|, with
L(0) =0, and L(s +t) > L(s) + L(t), for all s > 0,¢ > 0.
Then asA — o, we have the following.

ii) The marginal density forX satisfies

holds for all\. Thus if we first leth — 0 and then let — ¢,
we getlimy_... pa(t) = ¢, the characteristic function of
¢(6).
To prove (3.3), letys(-) be the characteristic function of
wi(-|x). Now, . (+) is (see the second expression at the top
of the following page). As in Step 1 [22, Proof of Theorem
3.3.1], the second term tends to zeroasends to infinity.
The same technique of proof used to obtain (3.1) gives

mj(az) — g(x)a :{)I-:L'aees ncC . (31) w(C)Cth f6 G_AL(t) dt
, e.u(-)z e Se. b _ 0
{ a ¥a(t) =G d8(1+0(1))+o(1) +o(1)

» " . m3(n)
iii) and the conditional densities satisfy

. D 0 where¢ € [z — 6,2+ 6],n € [0 — 6,0+ 6] C [x — 26,z + 26].
Pa(z]0) = C(0), oesnC (32) By the same reasoning as in Step 4 [22, Proof of Theorem
and 3.3.1], ¢ and n tend toz as é§ tends to zero. Therefore,
wi (6| z) Z ¢(x), vr e S°ncC. (3.3) the ratiow(¢)/m3(n) tends tol as in (3.1). Thus we have

f[0—6,0+61 mi(z)e —AL(x,0) pimt d$+f[0 5605 mi(z)e —AL(z,8) giwt ]

f[9—5:9+5] m3(y)e A dy+f[0 5,646] m} (y)e A9 dy

Pa(t) =
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de.
z—§,x46]° fmﬁ\(y)e_)‘ll(y:@) dy

/ w(e)e—)\L(m,e)ei@t 0+ / w(e)e—)\L(ac,e)eiGt
o—s.2+8] Jo—s010) TAWET AW dy + [ig_s o 4o mA(y)e @D dy [

limy oo Pa(t) = ™, a.e. with respect tg(-) for z € S and Proof:
part iii) is proved. O i) This follows from Proposition 1 and Blahut [8, Theorem
. . 6.3.2].

As noted in the Introduction, Theorem 3.1 shows that as. . . .
A goes to infinity, the observation channel becomes total%I 2 dB¥or(12.62)i()l 5’ Sve;eimve?h;tn:ﬂggyisb);' ua%;;e(i)g;er
informative in the sense of converging to point masses. Ogr w:a of cont’rac,zliction if there is &’ = A such that '
next result confirms thah increases a# decreases and the > V&Y ’

reverse, and then guarantees that in the limit\agoes to py(-18) =pi(-|6)
E/lec:(r)e, tgreecc?gggr’v?etlon channel becomes totally unlnformatl\ﬁﬁen by i) Of, Theorem 3_@3,(.) = mi (). Using (2.1) gives
atexp —(\ — X\)L(x, 6) is constant as a function ef which
. is impossible.
L= 1§f/w(9)L($79) de i) In [8, Proof of Theorem 6.3.2] it was shown that the
rate distortion function is zero fdr= [. By i), it is decreasing
and set in I. Clearly, if p(-) is independent of, then,(©, X) = 0.
iv) Considerp} (x| €) for two values); and\,. For fixedd
Ty = argirrlf/w(Q)L(a:, ) db.

Jm3, (y)e M Ewd dy)

It will be seen that wherd > [, the method breaks down,

D(piz ||p§1)(9) = 1Og<fm* ()= L(v.6) dy
Az

because there is no necessary relationship between the data

and the estimand. + (M — A?)/L(%e)piz (z]6) dx
Theorem 3.2:AssumeL(-, ¢)) is not constant. Then we have . ol m3, (%) J
i) For 1 € (0,1), p5(z|8) exists uniquely +/pA2 (]6)log mi (z)
y lig)fep 1,(0,X)=1,(0,X) >0 Adding this to the corresponding expression with and A,
. 1

interchanged gives
and is a continuous, decreasing function/ of
i) For I € (0,1), A and! determine each other uniquely. WeD (p3, ||p%,) (6) + D (p3, ||p,) (6)

can therefore writd = I()), or A = A(I). .
iii) For I € [I, ] =M —Az)</L(x,9)pA2(wl9) da
inf  1,(0,X)=0 _ " " _m3, («)
oC] }91)67)1 »( ) /L(.’L’, 0)p, (x| 0) da:) + /p)\2 (z]6)log s (@) dx
and the infimum is achieved by anyx) € P which is Jr/pil (2] 6)log mil(af) . (3.6)
independent of. m3, (%)
iv) Assume

Averaging overf in (3.6) and using the technique of Propo-
D(m§2||m§1) +D(m§1||m§2) < 00, for0 < A < Ao sition 2.1 finishes the proof.
v) Using (2.2) it is enough to show
thenl(Az) < I(\1), i.e., l(-) is a decreasing function.

Under conditions of Theorem 3, we have the following: H/pj(w 16)L(z,8) dx = 0, Voe S°nC. (3.7)

v) I(A) — 0, as A — . A—oo

vi) I(A) — I, asA — 0.

vii) Let Py(-|6), M3 (), W(:) and W;(-|z) be the prob-
ability measures corresponding #§(xz | 8), m}(x), w(#) and
wi(6|z), respectively. IfM3(-) — My(-) in distribution for
some probability measurig/y(-) as! — I (or A — 0), then

A continuity argument on: andé satisfying|z—6| < 6 bounds
part of the integral in (3.7). To bound the other part, shrink the
domain of integration in the denominator to an interval around
#. Then, bound the loss function on the reduced domains of
integration and bound the result by use of

Pi(-16) 2 Mo() (3.4) -
b= inf w(y)
WE(-|2) 5 W (). (35) yEl=8 0]
and
e g e . T . — N b
C(;;”“)) Under conditions of (vii), ifl < oo, then My(-) By = {u c0—8,6+8]|mi(y)> 5}'
0)-
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vi) Let A(0) = lim;_; A(1), then from iii) we know that
Iy (©,X) =0, and S0P} (o) is independent of. That is,
A(0) = 0 or it cannot be independent 6f

vii) For (3.4), it is enough to prove that for ali € B,
the Borel algebra o, asA — 0 P;(A|6) — Mo(A). Let
€ > 0 and choose, b, A\ to ensure that foR,, the integral of

(2.1) overA can be bounded by
My (4) _
Jia & N E@OMS (dy)

PX(A6) < (38)

Sincee=* -9 is bounded and continuous dm, 4], and
w/\ D
M3(-) = Mo(-)

(3.8) is bounded from above Ko A) + €)/(1 — ¢).
For a lower bound, integrating (2.1) over and bounding
the integral in the denominator bl we get

AL 2 [ e (i)
ANla,b]

for appropriately chosem, b, and \g. So, forA small, we have
P:(A]6) > My(A) — e, establishing (3.4).
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When it exists, let
zo = arginf/w(G)L(a:, ) de.

If L(z,0) = (z — 6)2, for example, thenu(-) must have a
finite second moment fat, to exist. In particular, if the prior
w(:) is N(p,0?), then

/w(Q)L(a:,Q) 49 =

o + (n— x)?

SO

inf/w(Q)L(x, 6) df = o>

x

and the infimum is achieved at, = p. If w(-) is
Exponentigl«, 1), wherey is the location parameter, then

/w(G)L(x, 8)do = (z — ji— 1/a)? + 1/a?
and

inf / w(O) L(z, 0)df = 1/

To get (3.5) forA small, integrate the posterior from theand the infimum is achieved a{ = 1 + 1/«. This ensures

proof of (3.3) over a setl and choose, b, and Ay so that

A1 [ ) e

—)\OL(ZJ Q)M* (dU) (1 — (:) . (39)

For the inequality the other way, for smal| chooseu, b,,
and A, small enough that

Wi(A|z) > / NLEO W (dh) > W(A) — .
ANla,b]
viii) By way of contradiction, supposé{,(-) # ((xzq). We

can chooses, b, ¢, and d independent of\ so that by (2.1)
we have

I(A) > / / L{z,0)P5 (dx | )W (d6)
[a,b] /[e,d]
and the limit of the right-hand side, as— 0, is

/[a,bJ /[c,d] L(z, 6)Mo (dw)W (d6)

2//L(x,9)Mo(dx)W(d9)—el. (3.10)

that Theorem 3.2 can be used, in some cases, to identify the
limits of MIL’s in practice.

IV. Two FORMAL SENSES INWHICH THE
CONDITIONAL DENSITY IS MINIMALLY INFORMATIVE

In this section, we provide two senses in which the condi-
tional density which achieves the rate distortion function lower
bound can be regarded as minimally informative. Suppose that
we replaceX from the last section with a multivariate random
variable X™ and consider

N {pn(xn 16) : / / pu(a™ | B)w(6)

Denote the MIL forX™ by pwyr.(z™ | 9), that is, write
pyiL{z™ | 8) = arg min I(©, X").
PEPn

Lo(z™,0) dz™ df < zn}.
(4.1)

Similar to the univariate case handled in Blahut [6], one can
obtain a form for the MIL based on the loss functién For

Now, since Mo(-) # ((zo), the right-hand side of (3.11) isgiven prior w, this is

strictly greater than

x

inf/L(az, OW (dO) + e =1+ e

for somee, > 0. By (3.4), the continuity ofZ(z,¢) and
I(A\) — lash — 0, we get

>
}IL%“‘ }\E’%/[ab/[pd (z,0)P5 (dz | )W (df)
= / / L(x,0)Mo (dx)W (df) > 1 + e
[a,b] /[c,d]

a contradiction, so (3.5) follows. O

m* (.’L’ ) —An Ly (z™,8)

n

DPMITL. (37 | 9) (42)

fm —)\nTn(J”,O) d n
wherem (™) is determined by
—An Ly (2™ (-))w(e)
/fm S L ) gy do <1 4.3)

with equality forz™'s such thatm? (z™) > 0, andX,, > 0 is
determined byi,,. We will see that a posterior formed from
the parametric family (4.2) and the soureds asymptotically
the same asv in a relative entropy sense. That is, the data
updatew trivially. In addition, we will see that use of the
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MIL, p3(x|8), gives the weakest inferences possible amorig enough to show/(a,,) — b. By a sequence of standard
the elements of?,,. Note that this differs from the results ininequalities we can derive that
Section Il which assumed a univariafe.

Our first result in this section is the asymptotic equivalence |I(a,) — b| < 2/w(9)q(a:)L(a:, ) dx df = 2b < 0.
of w and the posterior based om and (4.2). Note that
pui(z" | 6) has a dependence structure determined in part pihaly, a slightly involved argument gives that(z™ | ) €
n and ., and thatpun. typically cannot be given in closedp, for all large n. This argument uses the Dominated Con-
form. To prove results about the MIL we use an independenggrgence Theorem three times; once pointwisé and then
densityp, (- |6) in 7,,. The expected relative entropy betweefyo more times for the numerator and denominator of the
the posterior based on this density amdand the prior is resulting bound.
bounded by the relative entropy between the posterior basegtep 2: We prove the assertion of the theorem. Let™) =
on the MIL andw and the prior. We prove the first expecteq-[?=1 q(z;) be the density used in Step 1 to defingz™ | §)

relative entropy tends to zero asgoes to infinity. and write
Our result is for the case that the distortion is
" i (27) = / Pa(a™ | B)0(8) db.
Ln(z",6) = an »_ L(z;,0)
=1 Now, the nonnegative quantity,,, . D(wp; (- |z™)||w(-)) is

for given L(-, -). For convenience, we absorb theinto a,, in bounded from above by

P, and assumé, = 1, for all n. The average loss for fixed
+'is now - [[ w01 Oy d a8 @)

r(z) = /w(e)L(x,H) de. —/w(9) 10g</ a(y™)e I ") dy") de 4.7)

Its supremum and infimum are

r = infr(x) 7 =supr(z).
: - [[ w10
Theorem 4.1:Assume thai(z) is bounded, thal(-,-) is ‘ e In(@"8qp(8) n
continuous in both arguments, and thiat na,, exists and is x log / [ q(y)e=En(™9 dyn dg ) da"df.  (4.8)

s. Now, if rs < 1 we have
The term (4.6) is—na,I(a,) — —sb. It is enough to show

Ep,. D(wpy (-] X™)[Jw(-)) — 0. (4.7) — sb and (4.8)— 0. For (4.7), since- log(-) is convex,
we have
Remark: This result contrasts with the fact that for in- N
dependent and identically distributed (i.i.d.) data distributed 0< —108‘(/ Q(?J")C_L”(y 9) dy")

according to a density(x|6) where 6 is a d-dimensional
parameter, we hav&(©, X") = (d/2)lun + o(1). < nan/q(y)L(y, 8) dy < oo (4.9
Proof:

Step 1:First we prove that there exists a probability densitjor any ¢ and n. Denoting the integral on the right of (4.9)
q(-) such that the new parametric famy, for X" defined by py 4(6) we get

e~ L (@",0) ‘]:[lq(a:f,) /a(ﬁ)W (d6) =0
pa(a”|8) = - (44)
[ e Lntum) ‘Ulq(yi) dy™ and we haveL,, (Y™, 6) — sa(f), almost surely with respect

to ¢ for any 6. Now, a convergence in probability argument
is an element of?,, for n large enough. The main steps are agives
follows. Choose a constahte (r,7) such thatbs < 1 and a
probability densityg(-) so that [ g(x)L(x, ) dz < oo for all /q(y"’)e—’w(y”,@) dy" — e
6 and [ w(#)q(x)L(z,0) dx df = b. Now, p,(z™ | 6) satisfies
for eachd. Taking logs, one sees that the Dominated Conver-
//pn(a:" |)w(6)L,(z",0)dz" db gence Theorem implies that (4.6) and (4.7) will cancel.
CanL(26) Finally, (4.8) is nonpositive: Regard (4.8) as an expecta-
=na // w(l®)g(@)e” T L, 0) o (4.5) tion with respect tog(«") rather thanp,(-|6) and use the
! Ja(y)e=ant.) dy inequality —logz < (1/x) — 1. O

Denote the double integral in (4.5) Bya,,). Sincena,, — s, Next, we turn to a nonasymptotic sense in which the MIL
and sb < 1, to see thap,(z*|6) € P, for all largen, it is minimally informative. Following Csisar [13], the tangent
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hyperplane determined by(6¢) andw,: (6 |2") is Proof:
i) We have
n I VR wps (0] 27) - wye (0] )
H(z", w,wy ) = {w /w (0)log O de /w’(ﬁ) log pw(e) 4o

= D(w'(llw(-)) = D(w'()llwpy (- | £7))

and the corresponding expression with(¢ | z™) in place of
Let p € P, be another density. The tangent hyperplane,: (6|z"). This implies
determined byw(8) and w, (8| 2™) is
g D(wo()|lw(-))

= Dl (") ()

n < D{wo()||wp: (-] ™)) + D(wp: (-] 2™)||w(-
H(a:",w,wzo)z{w’:/uz’(@log—wp(e';j )de (o)l (127) CONERIE)
w() and the corresponding (reversed) inequality with(6|z")
= D(w,(-| .,L,n)Hw(.))}' g}vpelai():e ofw,,. (6| z™). Taken together these two inequalities

i) Since wg € Sy, (w,w,: ,w,), we have that
These two tangent hyperplanes divide the whole space of
priors into subspaces. One of them a",w,wy, ,w,),  Pwol)llw(-))
defined to be < D(wo () |lwps (-1 X™)) + D(wps (- | X™)|w(:)).

We also have the reverse inequality fop(#|.X™) in place
of w,. (6] X™). Taking expectations with respect t@,,-
and m,,_, respectively, gives two inequalities which, taken
together, give ii) in view of the definition of the MIL. [

/. W pr;(9|xn) wor (| 2™l -
{w / (9)1 giw(e) dQSD( p;'l( | )H ())7

o (8] ) .
/w@byjmﬁﬂwzm%uxmm»}

Let S, (w, wp: , wp) = Nen S(x™, w, wy: ,w,) and letwy be
a member ofS,, (w, wy: ,w,). We show that the MIL updates We have studied the solutions to the problem of minimiz-
w(-) to a posteriotw,- (6 | ™) further from any target density ing the Shannon Mutual Information (SMI) over a class of
wo in Kullback—Leibler distance than any other membeest channels defined by a distortion constraint. That is, we
p(z™|#) in P, does. This means that the MIL requires morbave studied the class of conditional densities which achieve
data than any other member 8f, does to achieve the samethe rate-distortion function lower bound. The solutions are
accuracy of estimation. To get a result for individu#fs, let parametric families that depend on a distortion function, an

V. DISCUSSION

U(w,wm,wp) = {a:" : D(wm(- | a:")||w())
< D(wp(-|2™)|Jw(:)) }-

Since
B, D(wpy (- [2")|[w(-)) S B, D(wp(-[27)]|w(-))

it is likely that for somexz™, U(w, wy: ,wp) # ¢.

Theorem 4.2:
i) If
" e U(w,wp;,wp)
and
wq € S(x",w,wp;,wp)
then

D (wo(")llwp; (- 12™)) = D(wo()[lwp(-[2"))-

ii) If for some n, wo € Sy (w,w,: ,wp), then

Ep,. D(wo()llwp; (-] X)) 2 Em, D{wo(:)|wp(- | X™))-

allowable distortion, and the source distribution itself. While
the rate-distortion function quantifies the amount of data
compression that can be optimally achieved, the conditional
density that achieves the rate-distortion function lower bound
has the weakest dependence between the source and the output
within the class of conditional densities over which we have
minimized.

Our main results are properties of these conditional densi-
ties. For a fixed source and distortion function, we have shown
that as the distortion permitted increases, the channel becomes
ever less informative. By contrast, when the distortion per-
mitted decreases, the channel becomes ever more informative.
The limits of totally informative and totally uninformative can
be characterized as trivial: The first is just the source itself;
the second is a limiting distribution independent of the source.

Our third main result is that the optimal channels are
minimally informative in an asymptotic sense. If we minimize
the SMI between a source amdi.i.d. random variables that
depend on it, we get an-variate density. If we take the limit
asn increases of the SMI between the source and aariate
random variable distributed according to the optimalariate
density, we find this limit to be zero. By Bayes rule, this
SMI is the expected relative entropy between the source and
the conditional distribution of the source given the random
variable. That is, the: variate random variable contains ever
less information about the source asncreases, i.e., as the
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number of receivers increases. By contrast, the rate-distortBitkel and Collins [5]. The minimax approach taken in these
function has a fixed number of receivers and minimizes overferences maximizes over parameters and then minimizes
replications of the data compression procedure. over estimators. Here, decision theory chiefly enters in defining
An alternative way to view the procedure proposed hetbe set of likelihoods over which one will minimize the SMI.
is that it is a variant on maximum entropy. Indeed, th&his set is defined to be those parametric families for which
SMI I(©, X) is the difference between an entrogg(©) the random variabl& itself as an estimator of the paramefier
and a conditional entropyH (#|X). Minimizing the SMI has Bayes risk under the chosen prior bounded Recalling
with a fixed distribution for® over the class of conditional that the SMI is itself a minimum over density estimators, see
densities used for the rate-distortion function is equivalefit], the procedure here amounts to minimizing over likelihoods
to maximizing a conditional entropy over the same class. &fter having minimized over estimators.
addition, this class of densities has a statistical meaning. It isln the context of the normal example of Section Il, using an
the class of likelihoods for which the Bayes risk of estimatinlyllL amounts to a recommendation that if one truly believes a
the parametef by the random variableX itself is bounded normal prior is appropriate and one knows little else, the only
by a real number\. statistical option is to report an inflated posterior variance.
More generally, information-theoretic techniques have bedéithough not satisfying, this result is consistent with what
used in various statistical contexts. The SMI has been usedge expects in the normal case with squared-error loss. If one
for instance, by Bernardo [4]. He proposed using the capacithooses a different prior, one gets other likelihoods that do not
achieving source for a channel as a minimally informativadmit closed-form expressions. More generally, one can use
prior when one uses the channel as a parametric family for dat@ducts of univariate MIL’s to achieve better inferences; this
analysis. Here we have essentially reversed this. In contrastuld be minimally informative apart from the assumption of
to Bernardo’s reasoning, we have minimized the SMI ovdéndependence. Note that in this formulation, the interpretation
parametric families for a fixed prior: This provides optimabf the parameteé arises fromL and the optimizationd is a
data compression and produces the conditional density thagation parameter in general only in the sense that it can be
gives a posterior as close as possible to the prior. Conditiostimated byX with Bayes risk bounded by. This reverses
densities giving posteriors close to their priors are uninfothe role of estimator and likelihood, because it is the estimator
mative, and because they achieve the rate-distortion functidwat is fixed, and we are seeking parametric families for which
lower bound we have called them minimally informativet is good.
likelihoods, MIL’s. Theorems 4.1 and 4.2 verify the validity Once one has a prior and the MIL, one can construct
of this interpretation. credibility sets or find posterior probabilities for Bayesian
Although this is initially counterintuitive, in fact it reflects hypothesis testing. Alternatively, one can use the MIL to
the reality that usually a statistician is unable to formulafénd a maximume-likelihood estimator and form confidence
a physically plausible likelihood. An MIL in effect mini- intervals even though the optimality properties of the MIL
mizes the strength of assumptions that go into the choice @ Bayesian. Indeed, because our perspective is information-
likelihood even though this minimization is over likelihoodgheoretic, the technique is generally applicable. It can be used
that have bounded Bayes risk, and so cannot be too patiéth most summary statistics, interacts well with parameter
logical. Unlike other methods for likelihood selection, thigransformations, and can be used with dependent data. The
method directly optimizes over possible relationships betwesgtgjor drawback at the present time is that coding algorithms
outcome values and parameter values. This relationshipt@sobtain the minimally informative likelihood, or posteriors
fundamental because one can only make inferences abeupther estimators can be considerable.
the parameter from the data if the parameter and data aréinally, an unexpected benefit of MIL’s is that they permit
dependent. Indeed, the SMI between two random variab@somprehensive robustness analysis. In addition to being able
is zero if they are independent. The hope would be thigt assess the sensitivity of inferences to choice of lasand
using an MIL, or rate-distortion function achieving conditionaprior, automating the choice of likelihood permits one to assess
density, would be conservative in the sense that even tholgnsitivity to modeling strategy. Namely, use of MIL’s permits
it is not right, an investigator could use it to make weaRne to compare the effects of using different summary statistics
but valid and useful inferences, when no other likelihood gnd different numbers of parameters. For instance, one might
available. The confidence intervals, while consistent, might bave an independent sequence of paired data and want to
wider than optimal; rejecting a null hypothesis using an Miestimate the difference in the locations. One can marginalize
would correspond to a better significance level under the tr@edivariate likelihood to get a model for the difference in each
likelihood. pair. This gives a univariate posterior for a single parameter
An earlier effort to find a minimally informative likelihood generating credibility sets for the difference in means in one
is due to Huber [16], [17]. For simplicity, assume the dat@€nse. Alternatively, one can condition on all the data in a
follow a distribution of the formF(z — 6) where# is unknown two-parameter likelihood to get a bivariate posterior. Now,
andF is a member of a clasB. Then, one can seardhfor the One can marginalize in the posterior to get a credibility set
distribution functionF,, with the smallest Fisher information.for the difference in means in a different sense. One expects
Huber [17] states that asymptotically efficiedf-estimators that taking differences in the data will be similar to taking
for 6 obtained by usingF, have minimax properties with differences in the parameters, but it is not clear that the two
respect toP. Related problems were solved by Levit [20] andnodeling strategies will always give compatible inferences.
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