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Abstract

We establish the consistency, asymptotic normality, and efficiency for estimators derived by
minimizing the median of a loss function in a Bayesian context. We contrast this procedure
with the behavior of two Frequentist procedures, the least median of squares (LMS) and
the least trimmed squares (LTS) estimators, in regression problems. The LMS estimator
is the Frequentist version of our estimator, and the LTS estimator approaches a median-
based estimator as the trimming approaches 50% on each side. We argue that the Bayesian
median-based method is a good tradeoff between the two Frequentist estimators.
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1. Introduction

Conventional statistical techniques like estimation and hypothesis testing can be embed-
ded in the expected loss framework of Wald’s Statistical Decision Theory (see Wald [26, 27]).
However, Yu and Clarke [29] observe that the loss function as a random variable often has
a distribution that is strongly right skewed. It is well known that, for such distributions, the
mean is not a good summary statistic because it can be too sensitive to the long right tail.
That is, the expected loss, i.e., the risk, will in general not be representative of the location
of the distribution of the loss. Consequently, the risk minimizing action will typically permit
larger deviations than necessary in prediction problems.

One way around this is to minimize a different feature of the loss function, namely its
median, which is well known to be more representative of the location of a skewed distribution
than the mean is. Thus, here, we systematically replace the expectation of the loss with the
median of the loss (hereafter medloss). In terms of prediction, this helps avoid overprediction
and underprediction, see [28]. Moreover, it is straightforward to identify a median analog
of the Bayes estimator, here called the posterior medloss estimator, which minimizes the
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median of the loss with respect to the posterior. That is, the posterior medloss estimator is

o(x") = i d L(a(x"),O 1

(x") = argmin med L(a(x"),©), (1)

where x” = {x; : ¢ = 1,...,n} are the realizations of n d-dimensional random vectors
X"={X; € R¥:i=1,...,n}, L(a,0) is a nonnegative loss function, a(x") is an estimate
of #, D C RP is the decision space, and I(Ié‘ed)ﬁ is the median of the loss £ under the

posterior density 7(-|z") of © € R? given x™. The posterior is formed from the prior 7(+) on
¢ varying over the interior of B and the likelihood function is denoted fxeo(|6).

One benefit of using (1) is that it is defined more generally than risk based estimators.
This is so because the distribution of the loss always has a median but need not always have
a mean. (Consider the location Cauchy family for instance.) The insensitivity of the median
to the tail behavior will therefore make our method applicable in heavy tailed distributions.
Indeed, it will be seen in Theorem 1 below that the main moment-like conditions are expected
local suprema in Lemma 1 and are only required for the asymptotic efficiency of the MLE.

In regression problems, x is regarded as an explanatory variable for the outcomes

yzzh(xwﬁ)—i_ulv Zzlaana (2)

where 1;,x; and u; are the realizations of random elements Y; € R, X; € R? and U; € R,
respectively, and h is a known function in a class of functions H. It is conventional to index
regression functions by [ rather than € and we follow this convention here . As above, we
suppose that the true value 3y of ( is an element of B, an open subset of R?, and that
B € B is a random vector from a prior density w. Furthermore, we suppose the u;’s are
independently sampled from the distribution P on R. Then, to find the posterior medloss
estimator (1) for /3, we have to derive the posterior density of § given y and x and find
the action minimizing its median. The main contribution of this paper is to establish the
v/n-consistency, asymptotic normality, and efficiency of the posterior medloss estimator.

In the Frequentist context, one of the most common methods to estimate the regression
coefficients 3y is the least squares (LS) approach, which minimizes the sum of squares of
the residuals. It is well known that the LS estimator is y/n-consistent and asymptotically
normal. However, it is highly sensitive to outliers or other influential observations.

To overcome the excessive sensitivity of the LSE, there are numerous alternative robust
approaches. One of them is the least median of squares (LMS) estimator first introduced by
Hampel [11](page 380) and then developed by Rousseeuw [20]. Like the LS estimator, the
LMS estimator minimizes the median of squares of the residuals, i.e.

BﬁMS = arg min median[y; — h(x;, 3)]*. (3)

B i=1<i<n
Because it is based on the median, the LMS estimator has 50% breakdown point. That
is, 50 % is the smallest portion of the data that must be contaminated to force the LMS
estimator to move an arbitrarily large amount. Asymptotically, Rousseeuw [20] provides a
heuristic proof that the LMS estimator has a /n rate of convergence in linear models by
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using arguments similar to those Andrews et al. [1] for the shorth estimator. A rigorous
proof is given by Kim and Pollard [14] . In nonlinear regression models, Stromberg [24]
gives conditions under which the LMS estimator is consistent.

As a compromise of sorts between the LS and LMS estimators, the least trimmed squares
(LTS) estimator (see Rousseeuw and Leroy [21]) is sometimes proposed. The LTS improves
the the /n rate of convergence of the LMS estimator to a y/n rate but the LTS can be less
efficient than the LSE. The one-sided LTS estimator is defined by

A S, .
ST = arg min > i), (4)
=1

where Tfﬂ(ﬁ) represents the i order statistics of squared residuals r?(3) = {y; — h(x;, 3)}?,
and the trimming constant 7 satisfies § < 7 < n. Its consistency and asymptotic normality
for nonlinear regression can be found in Cizek [3, 4]. In Sec. 3, we define the analogous
two-sided LTS estimator in (4) and argue it is more reasonable than the one-sided version.

Having now considered fully five estimators — posterior medloss, LS, LMS, one-sided LTS
and two-sided LTS — it is worthwhile to see what they are in a simple example. Consider a
flat prior on a unidimensional 3 in a regression through the origin. That is, write

vi =xiB+u;, i=1,....,n, (5)

where the outcomes u; are IID N(0,0?). Then the posterior distribution of 3 given {(y;, z;) :
i =1,...,n} is also normal with mean s,,/8.,, where s, = >0 | z;y; and Sy = Y0, T3,
Then, under squared error loss, the posterior medloss estimator is the posterior median;
this follows from [29] because the posterior is normal and hence symmetric. That is, the
posterior medloss estimator is the posterior mean given by s,,/s,, which is the same as the
usual LS estimator. In this example, the LMS estimator is
0, = arg min medianly; — z6]”,

clearly different from either the LS or medloss estimators because medians are rarely numer-
ically equal to means. (This is separate from the fact that the LS and medloss estimators
are y/n convergent whereas the LMS estimator is only /n convergent.)

The one-sided LTS estimator (4) reduces to the usual LS estimator when 7 = n in which
case it coincides with the posterior medloss estimator. Otherwise, it is different from both
the medloss and LS and in none of those cases is it the same as the LMS estimator (apart
from sets of measure zero). Similarly, the two-sided LTS estimator reduces to the usual LS
or posterior medloss estimator in the absence of trimming. However, when the trimming is
nontrivial, the two-sided LTS numerically differs from all the foregoing estimators (off a set
of measure zero) because the trimming is two sided and a mean is taken of the remaining
terms. We comment that trimming n — 1 data points in the one-sided LTS reduces to finding
a single point that fits the model perfectly while trimming |n/2]| on each side in the two-
sided LTS reduces to finding a single point that represents the fit of the model to the whole



data set. (This is exact when n is odd but approximate when n is even.) Between the
two extremes of zero trimming and full trimming, the LTS estimators have /n convergence.
However, in the limit of full trimming the two-sided LTS reduces to the LMS (with rate /n
rate) and the behavior of the one-sided LTS is unclear. Note also that the LTS is y/n for
any fixed trimming proportion p in [0,1/2) on both sides. The y/n rate holds even if p is
allowed to approach 1/2 slowly, but at p = 1/2 the asymptotic rate drops suddenly to /n.

If a N(u,0?) prior is used on (3 instead of a flat prior, the above statements remain
the same apart from the fact that the posterior medloss estimator will be a combination of
the prior mean and the sample mean and so will not coincide with the LSE, except in an
asymptotic sense.

The rest of this paper is organized as follows. In Section 2, we present our main result
giving the asymptotic behavior of the posterior medloss estimator for parameter estimation
in the absence of covariates. In Section 3, we state results giving the asymptotic behavior for
the LMS and LTS estimators. These results are given for the more general case of non-linear
models, however, they reduce to the parametric case and so can be compared with our main
result in Section 2. Section 4 discusses the comparison of the posterior medloss estimator
to the LMS and LTS estimators more generally.

2. Main results

We establish the asymptotic behavior of the posterior medloss estimator 9,, for finite
dimensions in four steps. First, we use the asymptotic normality of the maximum likelihood
estimator (MLE) 6, to identify the limiting distribution. Second, the convergence of posterior
density to the normal in total variation is used to show the convergence of their spatial
medians. Third, we prove that 9, can be approximated by 0, up to an error of op(n_l/ 2).
Finally, Slutsky’s theorem gives the result we want for 9,,.

Since there are numerous results for the asymptotic normality of the finite-dimensional
MLE, it is enough here to quote them without proof. For instance, the following lemma from
Schervish [22] gives conditions under which the MLE is asymptotically multivariate normal
and efficient in general parametric families.

Lemma 1. Let Q be a subset of RP, and let {X; € R : i = 1,2,...} be conditionally
IID given © = 0 € RP each with density fx,e(-|0). Let 0, be the MLE and assume that it
converges to 0 in Py for allf. Assume that fx,16(:|0) has continuous second partial derivatives
with respect to 0 and that differentiation can be done under the integral sign. Suppose that
there exists M,,(x,0) such that, for each interior point 6y of ) and each k, j, we have

02 92
su —o x|0y) — ——1o x|0)| < M, (,6,),
\\Ofeoﬁ)gn 6,,00, g fx,j0(z|00) 06,00, g fxe(x0)] < (z, 6p)

with limOEgoMrl(X, 6p) = 0 and that the Fisher information matriz Zx,(0y) is finite and

nonsingular. Then, under Py,

V0, — 05) 5 N(0.Zx (60)). (6)



Next we turn to the convergence of posterior density to the normal for finite-dimensional
parameters. Asnoted in Lehmann [15], it is not enough to impose the conditions in Lemma 1
on log fx,je(x|f) in the neighborhood of fy as is typically the case in asymptotic results. The
behavior of log fx,|e(x|f) must be controlled even when § is far from 6,. This is so because
the normalizing constant in the posterior density is the marginal for the data that is an
integral over the whole parameter space. Again, there are numerous results, see Borwanker
et al. [2], Lehmann [15] Ghosh and Ramamoorthi [7] and Prakasa Rao [19]. Here we use
the following from Schervish [22]. Note that the limiting distribution has variance given by
the Fisher information so the posterior is efficient.

Lemma 2. In addition of the assumptions in Lemma 1, suppose that for any r3 > 0, there
exists an € > 0 such that

Pgo{ sup l(Ln(Q) — L,(0y)) < —6} — 1,

H9—00||>T3n

where L, (0) = Yo log fx,je(x|0). Assume also that the prior has a density m(0) with
respect to Lebesgue measure and that 7(-) is continuous and positive at 0y. Then, we have
that, as n — oo,

A

where " = {@; - i =1,...,n} and 7 (-|&") is the posterior density of T = /n(© — 0,(x")).

w (ta) — (2m) 72 Iy, (80)|eap{— £ Tx, (60)/2} | At~ 0, (7)

To state Lemma 3, we make the following definitions. For any distribution function F'(-),
let

QWY F ') =inf{z: F(z) > t}, for0<t <1

be its quantile function. Now denote by (),, the quantile function associated with the distri-
bution function F), for each n > 0. If Q,(t) — Qo(t) at each continuity point ¢ of Qy(t) in

(0, 1), @, is said to converge in quantile to @y, denoted by @, LA o. We have the following
from Proposition 3.1 in Chapter 7 in Shorack [23].

Lemma 3. Convergence in distribution is equivalent to convergence in quantile, i.e.,
L Q
F, = Fy <= Qn = Qo.
Now we can establish our asymptotic results for the posterior medloss estimator.

Theorem 1. Suppose that the assumptions of Lemma 2 hold and that the convergence of
the MLE, 0,,, to 0, is a.s., i.e. 0, — 0y a.s. Py = Py,. Further, let 6, = §,(x") be the
posterior medloss estimator of 0 € RP for all realizations {z; i =1,...,n} of {X; € R%:
i =1,...,n} and all n with respect to a nonnegative loss function L(0, a) satisfying the
following conditions:



(i) £(8,a) = 1(6 — a) >0,
(ii) 1(t1) = U(t) if [|t]| = IIta]]-
Moreover, suppose that there exist a non-negative sequence {a,} and continuous function
K :R? — R such that

(iii) For any real-valued vector ¢, depending on n,

- 1/2Y] _ _
711220 g};ﬁ[anl((T%— c,)/n'’?)] g?%[K(T%— )| =0,

where T = \/n(© —6,),

If Z has the normal distribution N(O, I}f(@o)), i.e. the limiting distribution of the pos-
terior density in Lemma 2, suppose that

(iv) 1/2 is a continuous point of the distribution of K(Z), and

(v) medzK(Z + m) has a unique minimum at m=0, where medz is the median with
respect to Z.

Then we have

6n — 0y a.s. Py and n*/*(0y — 6,) £ N(0,Zx! (6))-

Before giving the proof, we note that it is the asymptotic normality of the MLE and
posterior that is central to the proof of Theorem 1. That is, the assumptions in Lemma 1
and Lemma 2 only constitute readily verifiable conditions for asymptotically normal MLE’s
and posteriors. We do not use the formal assumptions again in the proof of the asymptotics
of the posterior medloss estimator below.

Remark 1: Note that conditions (i), (ii) and (iii) are true for L' loss with a, = n'/?
and K(t) = |[t||. Furthermore, in this case, Z is multivariate normal with median 0, so
conditions (iv) and (v) can be satisfied, verifying the conditions are not vacuous.

Remark 2: The role of asymptotic normality of the MLE is so essential that virtually
any time we have sufficient conditions for the MLE to be asymptotically normal, we have
a corresponding result for the posterior medloss estimator. This means that the substance
of Theorem 1 holds, in particular, for many regression problems in linear and non-linear
cases. For instance, in generalized linear models (GLM), if the first and second conditional
moments of the response variable (given the explanatory variables) exist then, as in Fahrmeir
and Kaufmann [6], we get asymptotic normality of the MLE and hence, by our Theorem 1, an
asymptotic normality result for posterior medloss estimators in generalized linear models.
More generally, we can use quasi-likelihood to obtain a version of Theorem 1 for GLM’s.
Under various regularity conditions, the quasi-maximum likelihood estimator (QMLE) has
a +/n rate of convergence and is asymptotically normal. Then, as used in Step 4 in the proof
of Theorem 1 below, §,, is asymptotically equivalent to the QMLE and has a /n rate of
convergence and is asymptotically normal in a regression settings. This contrasts sharply
with the LMS which does not have these properties, as will be seen in Theorem 2 below.



Similarly, when asymptotic normality holds for nonlinear models, see Gallant [8], we
obtain, via Theorem 1, an asymptotic normality result for posterior medloss estimators in
nonlinear models. Finally, the results of Koenker and Bassett [17], Bassett and Koenker [9]
can be used to obtain asymptotic normality of the posterior medloss estimator, via Theorem
1, for quantile regression models.

Proof. We prove Theorem 1 by way of contradiction in four steps. The first step obtains an
inequality we will need for the second step which shows n'/2(, — 8,) is finite a.s. The third
step shows n*/2(f, — d,) goes to 0 a.s. Py. Then we complete the proof by using Slutsky’s
theorem and the asymptotic normality of én Denote the posterior medloss with respect to

L(0,a) by M,(a) = med L(60,a).
(6,2) by My(a) = med £(6.2)

1. First, limsup,a,M,(8,) < limsup,a, M,(6,) = lim supn%)e((g[anl(T/nl/Q)]. Moreover,

med[a,l(T/n'/?)] — medz[K(Z)]

T|X" )

< [medla, (T/n')] — med[K(T)]| + jmed[K(T)] ~ medg[K(D)]].  (8)

The first term in (8) goes to zero by condition (iii) of the loss function. By (7), we can
show that T converges in distribution to Z, which implies that K(T) also converges to
K(Z) in distribution by the Continuous Mapping Theorem. So, using Lemma 3 with
condition (iv), we have Tml;e((gK (T) — medzK(Z) and therefore the second term in (8)

converges to zero. Thus,
lim sup,,a, M, (6,) < lim supnanMn(én) < medzK(Z). (9)

2. Let W, = n'/2(6,, — 8,). Now we show limsup,, |[W,| < oo a.s.
First, suppose that the statement limsup, |W,| < oo a.s. is false. Then, for every
positive vector M, there exists a set Ay with Py(Ap) > 0 such that W, (x) > M
or W, (x) < —M i.0. for x € Ay. Without loss of generality, we can assume that
W,.(x) > M i.o. Then, for the subsequence {n;} where the inequality holds, we have

=)

T+W,,
(5 ) liw + o

T+M
<—n1/2 )I{T + MzO}]

O My, (00,) = an,_med (6 = 6,,) = med a1

m(O|X™i) T|X"i L

> med |ay,,!
TX"i L

> med |ay,!
T|X"i L

s medy, [K(Z—l—M)I{Z N MZO}]. (10)




The first inequality holds because I(X)Iixepy < (X) for any non-negative random
vector X and an indicator function I with any set B. The second inequality holds by the
assumption that W,,(x) > M i.o. and by condition (ii) with T + W, > T 4+ M > 0.
Then we use arguments similar to those for the convergence of Tmpe(cg[anl(T/nl/ )] to

medz[K(Z)] in Step 1 to get (10).
According to Tomkins’ median version of the Lebesgue dominated convergence theorem
in [25] and condition (v) in our Theorem 1, we have

Jlim medz | K(Z4+M)Iz 4 mzo)| =medz lim | K(Z+M)I(z 1 mzo)
= K(+00) > medz K (Z).

Therefore, for large M, on a set of positive probability,
lim sup,, an M, (8,) > medz K (Z) > limsup, a, M, (0,),

which contradicts the definition of 4,,.
Thus, limsup,, W,, < oo a.s. Fy. Similarly, we have liminf,, W, > —oo a.s. F}.

. Next for any arbitrary ¢ > 0, we denote by Bj, the set such that for x € By, —M <
W,, < M for every n and Py(By;) > 1 —e. For a fixed x € By, W,(x) is a bounded
sequence, so it has a limit point m. Assume that m # 0. Then, for the subsequence
{n;} where W,,.(x) — m, we have

liminf a,,, M, (,,)

ng

= liminf med [aml (

n;  T|X"

=)

1/2
n;

T4+W,,
> medzK(Z+m) — limsup %l}?g [a,J(%)] — mede(Z—l—m)‘.
n; ¢ n;
Note that
T4+W,,
N
T+W,,.
< AN — | — .
< et (S| — gt KT W)
+ ;T'I)‘QQK(T+Wni) —medzK(Z+m)|.

Then, by condition (iii) and arguments similar to those for the convergence of ;rrf)e((g[K (T)]

to medz[K(Z)] in Step 1, we have

T+W,,

172 S €
n;

med [anil (

T|X"™i

)] — medz K (Z+m)




Thus, by condition (v), we have
liminf a,,, My, (8,,) > medz K (Z+m) — €

ng

> medzK(Z) —e.

Since e is arbitrary, we get liminf,, a,, M,,(,,) > medzK(Z), which is impossible by
(9). Therefore, m=0 and n'/2(5, — 6,) — 0 a.s. Pp.
4. Finally, the proof is completed by observing

n2(8, — 09) = n'/?(6, — 6,) + n'/2(6, — o) 5 N(0,Tx (60)).

To summarize the key conceptual point of our result we state the following.

Corollary 1. Suppose asymptotic normality of the MLE and of the posterior density hold
and consider any continuous posterior density of © given X" = x* under L' loss, i.e.
L(0,a) = |0 — al|. If the median of the L' loss is unique, then we have

8y — 0y as. Py and n'*(6—8,) 5 N(0,Tx!(6,)). (11)

More generally, (11) holds when the L' loss is replaced by any strictly increasing function of
|© — d(&")||, provided the median of the function is unique.

We remark that the results in Theorem 1 and Corollary 1 can be easily extended to the
case of Markov chain settings by using arguments similar to those of Borwanker et al. [2]
for the asymptotic behavior of Bayesian estimators.

3. Asymptotics for two related estimators

In Section 1, the posterior medloss was contrasted with four other estimators in the
context of the normal example. In this section, we focus on two of these, the LMS and the
two-sided LTS. Although Theorem 1 is shown only for the purely parametric case, i.e., no
covariates, the discussion after Theorem 1 shows that it holds for a variety of model classes.
Consequently, for generality, we state results for the LMS and two-sided LTS for the context
of non-linear models.

For the LMS, we recall that Kim and Pollard [14] established a cube-root rate of con-
vergence to a limiting Gaussian process for linear regression models. Our first result extends
this to non-linear regression models of the form (2). To state our result, let H be a fi-
nite dimensional vector space of real-valued regression functions of the form h = h(x,3)
for p € B. Let R > 0 and define the envelope Hg(+) to be the supremum of |h(-,6)| over
Hr = {h(-, 0)||8 — Boll < R}, ie., Hr(x) = supey, |M(x, #)|. Then, we have the following.

Theorem 2. Suppose



X, and u; are independent foriv=1,...,n.

h(x;, B) is continuous in 5 € B and is differentiable in 3 on a neighborhood of 3.

Qn = Ex|[W (X, Bo)I (X, Bo)"] is positive definite.

u; comes from a bounded, symmetric density v that decreases away from its mode at
zero, and has a strictly negative derivative at ro, the unique median of |ul.

5. For any h € 'H, h satisfies the Lipschitz condition, i.e.

|h(X, B1) — h(X, B2)| < Lx||51 — B2||, where Lx > 0 depends on X,

and Ex(Lx) < oo.

6. Ex||h(X,8)| < oo for & € U(Bo, R), where U(a,b) is an open ball at center a with
radius b, and Hg is well-defined for R.

7. Ex|W (X, Bo)Tw| # 0 for any w# 0.

Then we have that n1/3(ﬁA£MS — Bo) converges in distribution to the arg max of the Gaussian
process

-

Z(0) =+'(ro)0" Qo + W(0),

as n — oo, where 0 = § — By and the Gaussian process W has zero mean and continuous
sample paths.

Proof. This theorem is the case ¢ = 1/2 in Yu and Clarke [30]. O

This result shows that in nonlinear regression models, the LMS estimator has a slow
rate of convergence. Note that since the LMS is based on a median, it can also be viewed
as a trimmed mean estimator with a trimming proportion approaching 50% on both sides.
Clearly, the more the trimming, the fewer data points that contribute directly to the esti-
mator. Consequently, the rate of convergence slows from root-n to cube root n. To reinforce
this intuition, we observe that when the trimming proportion is strictly less than 50% on
each side the n'/? rate of convergence and asymptotic normality are recovered.

To define the second estimator, the two-sided LTS, it is worth recalling the one-sided
LTS from (4). The asymptotic consistency, normality, and variance of the one-sided LTS
were established in [3, 4]. By contrast, the two-sided LTS estimator is

Gz 7 = argmin 3 oy (9), (12)

n—1+1

where Tfﬂ (B) represents the i'" order statistics of squared residuals r?(3) = {y; — h(zs, 5)}?,
and the trimming constant 7 satisfies § < 7 < n. The one-sided LTS trims off only the large
values of the r;’s whereas the two-sided LTS trims off the small and large r;’s equally.

Parallel to [3, 4], we establish the asymptotic consistency, normality, and variance of the
two-sided LTS. Again, consider the nonlinear regression model (2) and assume let {X;}ien
be sequence of f-mixing random variables, i.e., the variables satisfy

By, = sup E{ sup |P(Blo?) — P(B)|} — 0, (13)

teN BEO'{+m
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as m — oo, where o} = o(X;, X;_1,...) and O{ = 0(X¢, X¢y1,...) are o-algebras; this is a
condition roughly ensuring that when B is defined by (future) variables that are sufficiently
separated from the (past) variables in the o-algebra of that the two are independent. In
particular, if the X;’s are independent then (,, = 0 for all m > 1.

To state our result, denote the distribution functions of U; and U? by F and G, the
corresponding pdf’s by f and g, and quantile functions by F'=! and G, respectively. Also,
observe that the choice of the trimming constant 7 in (3) may depend on the sample size
n. So, we assume that a given sequence of trimming constants 7,, is given with the property
that 7, /n determines the fraction of sample included in (3) and that 7, = [An], where [z]
represents the integer part of z, so that 7,,/n — A for some 1/2 < A < 1. Now we have the

following for G{-F5™

Theorem 3. For (3-mizing explanatory variables and further reqularity conditions (see Yu
and Clarke [31]), we have, when X € (1/21), that

A(LTS,m) P
ﬁ( ™ P30 asn — oco; and

2. V(B — By) 5 N(0,Vay),

where Vo) = (C’A) 02/\Qh , Qn = Ex|h
H(1 =N, HA) = f(a)) + f(=ar), o

Proof. The proof follows [3] and [4] closely; see Yu and Clarke [31]. O

(X, Bo)W (X, Bo)T], Cx = (2A— 1)+ (BEE=2)[H(N) —
= G_l(/\) and 0'%)\ = EU1‘2][G*1(1—>\),G*l(A)}(U'Z)-

7

Theorem 3 shows that y/n-convergence and asymptotic normality hold for the two-sided
LTS estimator, but that it is inefficient. If the role of )\ is examined closely, it can be
seen that the asymptotic variance increases as the amount of trimming increases. Moreover,
comparing Theorem 3 with [3, 4] shows that from an asymptotic standpoint one- and- two-
sided trimming are equivalent: Both one- and two-sided LTS estimators have the same rates
and asymptotic variances.

Nevertheless, we argue that two-sided trimming makes more sense than one-sided trim-
ming in many contexts. Consider the following four examples. First, suppose we correctly
fit a model Y = pu + U where U is a symmetric error. If we use quantile data from U in
which the data at the n-th stage consists of n — 1 points representing the ¢/n quantiles of U
forg=1,...,n—1 then one- and two-sided trimming are essentially equivalent: The largest
residuals removed in one-sided trimming will be from both tails of U in equal numbers while
in two-sided trimming the largest residuals and the smallest residuals will be equally from
the tails of U and from the center of U. Also, both sides of 0 will be equally represented.

Next, suppose that U is asymmetric, perhaps shaped like an exponential. The large
residuals will be mostly from the side which has the heavier tail. One-sided trimming will
remove the large residuals and lead to an estimate which underestimates p if the heavier tail
is to the right and which overestimates p if the heavier tail is to the left. Two-sided trimming
will have the same problem, but to a much lesser extent since only half the residuals trimmed
will be from the heavier tail and they will be balanced somewhat by the removal of small
residuals which will slightly over-represent the side with the lighter tail. Overall, we suggest
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that when the model class is good, it is the error term that determines whether two-sided
trimming is better than or equivalent to one-sided trimming.

Now consider the same two error terms, but suppose the model space is all linear functions
of x while the true model is Y = X? + U so that X5,..., Xy are irrelevant. Suppose also
that the values of X are in three clusters, say 2/5 are around X; = 1, another 2/5 are
around X; = —1 and 1/5 are around X; = 0. When U is symmetric, removing the largest
residuals (from the points near X; = 0) will reinforce the idea that the linear model is true.
Removing some of the largest and some of the smallest residuals will still pull the fitted
line down probably making it a better fit to future data than the line defined only from the
clusters at X; =1 and X; = —1.

When U is asymmetric the situation is even worse. If the tail of U is to the right so that
the largest residuals come from points above the curve Y = X2 then the largest residuals
will come from points with X; near 0 and with Y values below the curve Y = X?. Removing
them will again reinforce the idea that a straightline curve is correct. The reinforcement in
this case will be stronger because the points with X; close to 0 that are above the curve
Y = X? will genuinely look like they came from a straightline model. Again, this may
happen with two-sided trimming too, but to a much smaller extent. However, as in the last
case, two-sided trimming will probably yield a straightline which is a better fit to future data
than the line from the one-sided trimming. That is, two-sided trimming is likely to give a
better wrong model.

More generally, comparing one- and two-sided trimming depends on the symmetry of the
error and the adequacy of the model class. The generic case seems to be the following. Fix
a model class and suppose we use maximal trimming in the two-sided case, i.e., we let 7
approach n/2 and permit n to increase. Then, in the limit, we obtain an estimate for 5 that
depends on a small number of pairs (y;,%;) that give the median discrepancy between the
model and the data. By contrast, if we use the analogous procedure on the one-sided LTS,
i.e., we let 7 approach 1, then we obtain an estimate of (# that again depends on a small
number of points but now these points give the minimal discrepancy between the model and
the data. Clearly, in a setting where there is high model uncertainty or high data variability
due to the error i.e., the modeling can be easily misled by errant data, an estimator derived
from the median discrepancy between the model and a small number of data points will be
better than an estimator derived from the minimal discrepancy between the model and a
small number of data points. The same sort of difference will hold for smaller amounts of
trimming, but be correspondingly less. On the other hand, when the data is sparse, i.e.,
n is small relative to d, the extent to which two-sided trimming gives more representative
estimators than one-sided trimming does will tend to be larger. This occurs because there
will be more variability among points that can be found to fit the model exceptionally well
(one-sided trimming) than among points which give a representative fit of the data to the
model. Otherwise put, one-sided trimming gives an estimator that may be a function of
inliers — points which may fit the model well but are suspect or overly influential for other
reasons — whereas two-sided trimming finds an estimator based on a typical fit.
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4. A comparison of posterior medloss estimator, LMS, and LTS estimators

In the last section we argued that the two-sided LTS was better than the one sided LTS.
Next, we argue that the posterior medloss estimator is a better choice than either the LMS
or the two-sided LTS asymptotically and in more realistic settings.

First, Theorem 1 shows that the posterior medloss estimator is \/n-convergent and its
asymptotic variance is the inverse of the Fisher information matrix, i.e. the posterior medloss
estimator is consistent, asymptotically normal with rate v/n and efficient. By contrast, for a
fixed 7 € (n/2,n], Theorem 3 shows that the 2-sided LTS estimator is also y/n-convergent,
but will in general not be efficient unless 7 = n. That is, the posterior medloss estimator
has a higher asymptotic relative efficiency than the two-sided (or one-sided) LTS. For the
LMS estimator, Theorem 2 establishes a /n rate of convergence. Thus, in an asymptotic
sense, the LMS estimator is worse than either the posterior medloss estimator or the 2-sided
LMS estimator. Given these observations, there is no asymptotic reason to prefer either the
LMS or the LTS estimators over the medloss estimator.

From a finite n perspective, we note that the posterior medloss depends directly on all
the data while the LMS and LTS only depend on a subset of the data. This means that when
the data are good, in the minimal sense that none of them can be thrown out on the grounds
that they were collected improperly, the medloss retains them even though the LMS and
LTS do not. Indeed, all data points are treated symmetrically by the posterior (in the ITD
case) but the LMS and LTS by definition throw out some data. We expect this will often
give the medloss estimator more desirable stability properties when the data are good even
when there are overly influential observations.

For instance, when the data are noisy because of a large error term and complex because
finding a good model is difficult, omitting data might be bad because it’s unclear which data
points are most reliable. So, better than omitting data would be allowing the seemingly bet-
ter data to outweigh the seemingly worse data and this is what the medloss does. Indeed,
the medloss does this in two ways: First, by retaining all the data and second, by using the
prior as a sort of sanity check. That is, when data lead to a model that is poorly representa-
tive there is a good chance that the model will be in a region of low prior probability. This
means that the posterior cannot assign it high probability. That is, the effect of the prior in
the medloss estimator will tend to be to pull the poor model to a region of better models.

For instance, recall the normal example of Section 1 given by (5). The medloss estimator
under squared error loss with a flat prior comes from the posterior which is located at s, /5.
Thus in the nicest case, the medloss and the LS or LTS effectively coincide when the data
is well-behaved; this is not so in general. Note that the location has a breakdown point of
zero because moving any one data point can move the location an arbitrary amount. Since
the posterior is normal, it too has a breakdown point of zero. However, when a proper prior
is used, a deviation in a single xy must be relatively larger to move the medloss estimator a
fixed amount than to move s,,,/s,, even though the breakdown point is still zero. We suggest
that a breakdown point of zero for the medloss estimator essentially only occurs when the
posterior depends on statistics that have a breakdown point of zero; otherwise we expect a
very high breakdown point. Note that the breakdown point of the LTS depends on the level
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of trimming. Moreover, when the data are good and s,,/s,, is overly influenced by a small
number of data points, it may indicate that the model class is inadequate. Distinguishing
between good but overly influential data and good but not overly influential data will be
useful whereas throwing out the subset of data that leads to poor fit for a given model class
can be misleading.

These differences become more pronounced outside the normal error setting with simple
models, good data, and decent fit. For instance, suppose n is small relative to d. Then,
even when all the data is good, they often clump in dispersed regions with large empty
regions between them. In this setting throwing out data means we are left with estimates
that depend on a small number of incompletely representative points. The consequence of
this is that an LTS estimator exacerbates data sparsity and nonrepresentativity while the
posterior medloss estimator does the best it can with all the data, making it preferable.

Note that the argument here depends partially on using proper priors both on the param-
eters within a model and across the model space. The field of prior selection for parameters
is well developed and several excellent reviews are available, [13], [10]. The field of prior
selection for model spaces and their exploration via the posterior is less well developed but
is currently under very active investigation, see [5], [16], and [12], among others. Overall,
the implications for the present context seem to be that any ‘reasonable’ proper prior will
give better behavior than a non-proper prior. That is, the propriety of the prior is what lets
it serve as a sanity check by ruling out some regions of the model space or parameter spaces
that are unrealistic. It can be seen from the statement of Theorem 1 that the choice of prior
only affects the finite sample properties of estimators.
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